深度学习 作业一

1.分析为什么平方损失函数不适用于分类问题

       最小化平方损失函数本质上等同于在误差服从高斯分布的假设下的极大似然估计,然而大部分分类问题的误差并不服从高斯分布。而且在实际应用中,交叉熵在和Softmax激活函数的配合下,能够使得损失值越大导数越大,损失值越小导数越小,这就能加快学习速率。然而若使用平方损失函数,则损失越大导数反而越小,学习速率很慢。

2.对于一个三分类问题,数据集的真实标签和模型的预测标签如下:

真实标签 1  1  2  2  2  3  3  3  3

预测标签 1  2  2  2  3  3  3  1  2

分别计算模型的精确率、召回率、F1值以及它们的宏平均和微平均。

类别1的精确率:1/1+1=\frac{1}{2},类别2的精确率:1+1/1+1+1+1=\frac{1}{2},类别3的精确率:1+1/1+1+1=\frac{2}{3}

平均精确率:\frac{1}{3}(\frac{1}{2}+\frac{1}{2}+\frac{2}{3})=\frac{5}{9}

类别1的召回率:1/1+1=\frac{1}{2},类别2的召回率:1+1/1+1+1=\frac{2}{3},类别3的召回率:1+1/1+1+1+1=\frac{1}{2}

平均召回率:\frac{1}{3}(\frac{1}{2}+\frac{2}{3}+\frac{1}{2})=\frac{5}{9}

宏平均F1值:2*(\frac{\frac{5}{9}*\frac{5}{9}}{\frac{5}{9}+\frac{5}{9}})=\frac{5}{9}

微平均:2*(\frac{\frac{5}{9}*\frac{5}{9}}{\frac{5}{9}+\frac{5}{9}})=\frac{5}{9}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值