神经网络参数量的计算

神经网络参数量的计算

简介

参数量就是指,模型所有带参数的层的权重参数总量。视觉类网络组件中带参数的层,主要有:卷积层、BN层、全连接层等。(注意:激活函数层(relu等)和Maxpooling层、Upsample层是没有参数的,不需要学习,他们只是提供了一种非线性的变换)

卷积层

K 2 × C i × C o × + C o K^2{\times}C_i{\times}C_o{\times}+C_o K2×Ci×Co×+Co
其中 K K K为卷积核大小, C i C_i Ci为输入channel数, C o C_o Co为输出的channel数(也是filter的数量),算式第二项是偏置项的参数量 。(虽然一般不写偏置项,因为不会影响总参数量的数量级,但是我们为了准确起见,把偏置项的参数量也考虑进来)

BN层

2 × C i 2{\times}C_i 2×Ci
其中 C i C_i Ci为输入的channel数。BN层有两个需要学习的参数,平移因子和缩放因子。

全连接层

T i × T o + T o T_i{\times}T_o+T_o Ti×To+To
其中 T i T_i Ti为输入向量的长度, T o T_o To为输出向量的长度,其中第二项为偏置项参数量。不过目前全连接层已经逐渐被Global Average Pooling层取代了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值