简介
参数量就是指,模型所有带参数的层的权重参数总量。视觉类网络组件中带参数的层,主要有:卷积层、BN层、全连接层等。(注意:激活函数层(relu等)和Maxpooling层、Upsample层是没有参数的,不需要学习,他们只是提供了一种非线性的变换)
卷积层
K
2
×
C
i
×
C
o
×
+
C
o
K^2{\times}C_i{\times}C_o{\times}+C_o
K2×Ci×Co×+Co
其中
K
K
K为卷积核大小,
C
i
C_i
Ci为输入channel数,
C
o
C_o
Co为输出的channel数(也是filter的数量),算式第二项是偏置项的参数量 。(虽然一般不写偏置项,因为不会影响总参数量的数量级,但是我们为了准确起见,把偏置项的参数量也考虑进来)
BN层
2
×
C
i
2{\times}C_i
2×Ci
其中
C
i
C_i
Ci为输入的channel数。BN层有两个需要学习的参数,平移因子和缩放因子。
全连接层
T
i
×
T
o
+
T
o
T_i{\times}T_o+T_o
Ti×To+To
其中
T
i
T_i
Ti为输入向量的长度,
T
o
T_o
To为输出向量的长度,其中第二项为偏置项参数量。不过目前全连接层已经逐渐被Global Average Pooling层取代了。