3D检测
海清河宴
没有解决不了的问题,没有调不出来的程序
展开
-
Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time
Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time简介简介给定一个3D激光雷达点云,我们如何快速且精确地分割它们?快速且精确的3D激光雷达点云分割是移动机器人在分类,跟踪,SLAM等不同应用中的重要问题。尽管它很重要,但是现有方法无法同时实现速度和准确性;尤其是,在3D域中执行分割的方法太慢,无法在实时处理中使用。我们提供了曲面体素聚类(CVC),一个利用了快速且精确的用于分原创 2020-11-03 17:21:29 · 752 阅读 · 0 评论 -
激光雷达点云的特征表达
激光雷达点云的特征表达简介激光雷达成像原理离散化BEV图Camera view图点对点特征(point-wise feature)提取特征融合简介激光雷达的稀疏点云成像与稠密像素点的图像成像不同,点云都是连续的,图像是离散的;点云可以反应真实世界目标的形状、姿态信息,但是缺少纹理信息;图像是对真实世界的目标离散化后的表达,缺少目标的真实尺寸;图像可以直接作为cnn网络的输入,而稀疏则需要做一...原创 2020-04-09 17:11:16 · 3569 阅读 · 0 评论 -
基于激光雷达点云的3D目标检测方法
基于激光雷达点云的3D目标检测方法简介基于BEV(bird’s eye view)的目标检测方法基于camera view的目标检测方法基于point-wise feature的目标检测方法简介根据lidar不同的特征表达方式,可以将目标检测方法分成以下4种:基于BEV(bird’s eye view)的目标检测方法基于camera view的目标检测方法基于point-wise ...原创 2020-03-24 17:16:52 · 10269 阅读 · 0 评论 -
Complex-YOLO: An Euler-Region-Proposal for Real-time 3D Object Detection on Point Clouds
Complex-YOLO: An Euler-Region-Proposal for Real-time 3D Object Detection on Point Clouds简介3D目标检测整体框架点云预处理网络结构E-RPNAnchor BoxLoss简介在这项工作中,作者通过特定的复数回归策略扩展了YOLOv2(一个用于RGB图像的快速2D目标检测网络),来在笛卡尔空间中估计多类别3D包...原创 2020-02-23 19:35:24 · 1826 阅读 · 0 评论 -
PointPillars: Fast Encoders for 3D Object Detection from Point Clouds
PointPillars: Fast Encoders for 3D Object Detection from Point Clouds简介3D目标检测整体框架数据增强生成伪图像基础网络检测头Loss简介考虑到点云数据的不规则,将点云编码为适合下游检测流程的格式,是一个首先需要处理的问题。一般有两种处理方式:固定编码器,这种编码器往往速度快但是以牺牲精度为前提在数据中学习的编码器,这种...原创 2020-02-23 17:52:35 · 2306 阅读 · 0 评论 -
SECOND: Sparsely Embedded Convolutional Detection
SECOND: Sparsely Embedded Convolutional Detection简介简介原创 2020-02-23 16:03:36 · 2538 阅读 · 1 评论 -
PIXOR: Real-time 3D Object Detection from Point
自动驾驶标定算法IMU标定新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入IMU标定基本语法知识新的改变...原创 2019-10-24 14:45:06 · 1524 阅读 · 0 评论 -
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection简介3D目标检测整体框架特征学习网络卷积中间层区域提出网络(RPN)简介3D点云中物体的精确检测是许多应用中的一个核心问题,为了将高度稀疏的激光雷达点云与区域建议网络(RPN)进行接口。处理LIDAR点云的难点:点云稀疏、点云密度变化、点云数量比较多...原创 2020-02-23 14:14:35 · 1071 阅读 · 0 评论