基于激光雷达点云的3D目标检测方法

简介

  • 根据lidar不同的特征表达方式,可以将目标检测方法分成以下4种:

    • 基于BEV(bird’s eye view)的目标检测方法
    • 基于camera view的目标检测方法
    • 基于point-wise feature的目标检测方法
    • 基于融合特征的目标检测方法
  • 通过对整个检测流程的分析,将目标检测流程分成如下3个部分,并针对不同的目标检测方法,从这3个部分进行了详细的分析。

    • lidar representation:激光雷达点云的特征表达,包括bev图、camera/range view图、point-wise feature、融合特征
    • network backbone:用于特征提取的主体结构,可以为resnet,vgg等,也包括增强特征的方式,如fpn
    • detection head:检测网络输出,包括目标的类别、位置、大小和姿态,以及速度预测等,对于two-stage detector来说,roi pooling也是很重要的一个环节。
      在这里插入图片描述
  • 在实际应用中,无论对于哪一种基于lidar的目标检测方法来说,我们评价其好坏,需要看精度与耗时之间的平衡。根据不同算法在kitti的bird’s eye view任务下公布的结果,将部分基于lidar的目标检测方法的moderate精度和latency总结如表1,并根据方法所属的不同类别画出分布图,如图3所示,横坐标表示算法耗时,单位ms,纵坐标表示算法在车辆检测任务中moderate精度,其中蓝点表示基于point-wise feature的目标检测方法[4],橙点表示基于BEV的目标检测方法[2],灰点表示基于camera view的目标检测方法。
    在这里插入图片描述

  • 从图3,我们可以看出基于point-wise feature的目标检测方法精度最高,而且耗时有逐步减小的趋势,但是整体耗时依旧比其他两种方法高,其中耗时最低的是基于camera-view的目标检测方法,即LaserNet,仅有12ms,但是精度相对较最低;基于bev的目标检测方法[2]在精度与耗时之间做了比较好的平衡,因此,在实际自动驾驶应用中,基于bev的目标检测方法应用最多。

  • 目前基于point-wise feature的目标检测方法还处于研究阶段,效率无法保证,精度还未在真实自动驾驶车上测试,但由于该方法直接从点云提取特征,极大的保留了点云的原始信息,比较有潜力得到更好的效果。其实从图3中也可以看出。如果从效率上可以优化一下,在实际应用的可能性也会变大。这个图仅是不同方法在车辆检测子任务上的效果,其实,相同的方法在自行车和人的检测任务中精度排名差别很大,如PV-RCNN在车辆检测中排名第2,在行人和自行车检测任务中分别滑到第6和第4;STD在车辆检测中排名第5,在行人和自行车检测任务中分别滑到第20和第13,如果基于point-wise feature的目标检测方法可以在不同任务间依然能保持精度优势,那么其落地的可能性又会增大很多。

  • 基于融合特征的目标检测方法,并不是多传感器融合的目标检测方法,而是融合使用bev,camera view和point-wise feature,提高点特征表达能力。

基于BEV(bird’s eye view)的目标检测方法

基于bev的目标检测方法顾名思义是使用bev作为点云特征的表达,其检测流程如下图所示,包括3个部分:bev generator,network backbone, detection head。下面详细介绍一下这3个部分如何在基于bev的目标检测方法中发挥作用。

  • bev generator
    • BEV图由激光雷达点云在XY坐标平面离散化后投影得到,其中需要人为规定离散化时的分辨率,即点云空间多大的长方体范围(Δl * Δw * Δh)对应离散化后的图像的一个像素点(或一组特征向量),如点云20cm * 20cm * Δh的长方体空间,对应离散化后的图像的一个像素点。
    • 在bev generator中,需要根据Δl * Δw * Δh来生成最后L * W * H大小的bev特征图,该特征图是network backbone特征提取网络的输入,因此该特征图的大小对整个网络的效率影响很大。
  • Network backbone
    网络结构的设计需要兼顾性能和效果,一般都是在现有比较大且性能比较好的网络结构基础上进行修改。以voxelnet和pointpillar为例,pointpillar以voxelnet为原型,不改变原流程的基础上,对voxelnet[3]设计做了以下一些修改,使网络效率提高了10多倍,具体如下:
    • voxelnet使用stacked vfe layer,在代码中使用了2个vfe layer,pointpillar简化了voxel表达形式,变成pillar,提高了数据生成效率,并且只使用了一个vfe layer。
    • 简化主网络结构
      • 不使用3D卷积
      • 输入特征图的channel数从128减少为64
      • Tensorrt加速
  • Detection head
    detection head包括两个任务,即:目标分类与目标定位,由于bev将点云用图像的形式呈现,同时保留了障碍物在三维世界的空间关系,因此基于bev的目标检测方法可以和图像目标检测方法类比:目标分类任务与图像目标检测方法中目标分类任务没有差别;而目标定位任务可以直接回归目标的真实信息,但与图像目标检测方法中目标定位任务不同,该任务需要给出旋转框。与图像目标检测方法相同,基于bev的目标检测方法的detection head也分成anchor base的方法和anchor free的方法。
    • anchor base方法
      以voxelnet为例,需要人为设定anchor的大小,由于bev可以直接回归真实的目标大小,因此anchor也可以根据真实目标大小设定,如:以下单位为米,l、w、h分别表示anchor的长、宽、高,对于车来说anchor大小可以设定为la = 3.9,wa = 1.6,ha = 1.56,对于人la = 0.8,wa = 0.6,ha = 1.73,对于骑行者la =1.76,wa = 0.6,ha = 1.73,且对于每种anchor,设置了θa=0°和90°两种角度。由于目标有各种角度,因此为了得到更准确的角度回归,anchor的角度设置可以在[0°,180°)进行等间隔采样,获得更多不同角度的anchor,提高回归精度。回归误差的计算如下图所示。
      在这里插入图片描述
      在这里插入图片描述
    • anchor free方法
      典型代表是pixor[5],对于bbox的回归,如下图所示,对于正样本的红点p(x,y),需要回归如下信息:{cos(θ), sin(θ), dx, dy, w, l},其中θ为障碍物偏角,dx、dy分别为p点相对障碍物中心点的偏移,w、l是障碍物大小的表达。没有anchor,对目标的回归是不是简单了很多。
      在这里插入图片描述

基于camera view的目标检测方法

  • Camera view generator
    camera view图是将每圈激光线拉成直线再按行累积而成,因此也称为range view,其中投影图的高为激光线数,宽为lidar扫描一圈的点数,如: 64线激光雷达,水平角分辨率为0.2°,生成的camera view的图大小为64*1800。camera view相对bev图小很多,因此基于camera view的方法效率都较高。
    在这里插入图片描述

  • Network backbone
    网络结构的设计要依据任务需求,基于camera view的目标检测方法,多是以分割任务为主,因此网络结构大都是encode+decode结构,如下图1所示。因此有关提高分割效果的网络 设计思想都可以在此使用,如图2中使用不同大小的dilation rate的卷积获得不同感受野的特征表达,还可以使用global attention增加上下文信息。
    在这里插入图片描述在这里插入图片描述

  • Detection head
    基于camera view的目标检测方法有两种输出方式表达,一种是纯分割区域,另一种是分割与检测框。

    • 纯分割区域表达
      纯分割的输出是基于camera view的模型最直接、最好的一种输出。在原始3D点云中,尤其是远处的点,点与点之间的距离都较远,如bev投影图,造成点特征提取时很难融入上下文信息。而camera view投影图将点云中的点聚拢,每个点都可以很方便的获得更大范围的上下文信息,这种投影方式更适合分割任务。如在SqueezeSeg和PointSeg两篇文章中,都直接将分割作为最终任务目标,但是为了得到更好的联通区域,需要增加较多的后处理。如在SqueezeSeg,在模型输出后又增加了crf提高分割效果。在PointSeg中,使用RANSAC将异常点剔除,如下图,第一行为模型输入,第二行为模型直接的预测输出,第三行为将模型输出的camera view图反投影得到的点云图,第四行为经过ransac后再反投影得到的点云图,对比第三行和第四行对应的图可以看出,ransac有效的抑制很多离目标较远的点。
      在这里插入图片描述
    • 分割与检测表达
      分割任务对于基于camera view的模型相对简单,但是检测框的回归并不容易。camera view投影图增加了点云中点的上下文信息,但也将原本在3D空间分离的目标拉近,引入了遮挡与目标尺度变化,然而点云投影图又不像真实的图像那样有很丰富的纹理信息,造成了camera view图像很难做实例分割与目标框回归,因此,检测框的回归需要增加一些额外操作来实现。可参考lasernet。
      在这里插入图片描述在lasernet中,对于目标框中的点(x,y)需要回归6个信息,如上图所示,Box Parameters为6,包括:该点相对中心点的偏移(dx,dy), 相对旋转角度 (ωx,ωy) = (cosω,sinω),以及框大小 (l,w),从而可以通过下述公式计算得到真正的目标框中心点bc以及旋转角φ,其中θ为该点在点云中的方位角,Rθ为以θ为旋转角的旋转矩阵。
      在这里插入图片描述
      另外,由于对每个点的预测存在噪声,而后又在bev投影图中使用mean shift聚类方法得到更准确的目标框。
  • 由于3D点云在做camera view投影的时候丢失了原来的3D结构信息,引入了图像中的尺度变化和遮挡两个问题,因此少有方法直接在这种模式下作3D目标检测,一般需要在网络输出基础上做比较多的后处理。但是camera view的表达模式,极大的增加了远处点云的上下文信息,也是一种极好的提高点云特征表达能力的方式,后续在融合感知方法中会再介绍。

基于point-wise feature的目标检测方法

基于lidar的目标检测方法迎来了第3大类方法的介绍,前面已经介绍过基于BEV(bird’s eye view)的目标检测方法,基于camera/rang view的目标检测方法,这两种方法在自动驾驶的实际运用中都很常见,算是比较主流的方法。这两种方法研究的也比较早,相对成熟一些。而point-wise目标检测方法自pointnet之后,才有较多的研究文章用其解决自动驾驶中有关3D目标检测问题,在此之前,大都用来解决基于室内场景或者单个全扫描目标密集点云的分割、检测、场景理解的问题,其中研究有关RGB-D的问题最多。

这里我们将关注点放在如何用point-wise feature来解决自动驾驶的目标检测问题上。自2017年pointnet[3]之后出现的3D目标检测相关文章中,50%都出自香港中文大学,其中一部分来自商汤科技自动驾驶相关部门,如PointRcnn、Part aware and aggregation、PV Rcnn,另一部分来自腾讯优图实验室贾佳亚老师团队,同样也是自动驾驶相关业务方向,如IPoD、Fast PointRcnn、STD、3DSSD。这里面除了3DSSD方法为one-stage detector,其他都是two-stage detector,而3DSSD[10]主打高效,从而也可以看出刷榜还得靠two-stage detector。

我们从lidar representation,network backbone,detection head,来介绍一下point-wise方法。其中lidar represention部分是直接使用点云做输入,即n*4的点集,不做单独介绍,下面重点介绍一下其他两个部分。

  • Network backbone
    提取点特征一般有两种方式:基于pointnet/pointnet++的点特征、voxel特征。如图1:在STD中,组合了两种方式。如图2,在PointRcnn中,仅使用了pointnet++提取点特征。
    在这里插入图片描述
    在这里插入图片描述在使用pointnet++提取特征时,包含两个重要模块,即set abstraction(即,SA)和feature propagation(即,FP),如下图3所示其中SA是特征encoder过程,通过点云筛选与特征提取逐步减少点云点数,提高特征表达能力与感受野,FP是特征decoder过程,通过点云上采样,获得稠密的点云表达,并级联SA过程的特征,提高最终的点云特征表达能力。
    在这里插入图片描述在3DSSD中,为了提高模型效率,去掉了耗时比较严重的FP模块,由于SA过程只筛选了一部分点做特征表达,对目标检测的召回影响很大,尤其对点云比较稀疏的远处的目标,影响更大,因此3DSSD在D-FPS的基础上,提出了F-FPS,即通过点的语义信息来做点的筛选,保留更多的正样本的点,保证最终的目标召回率。

  • Detection head
    detection head除了完成目标分类与目标定位的任务,在two-stage detector中,还需要实现roi pooling,为第二阶段提供实例级别的特征。

    • 对于目标定位的任务,同样有anchor-base方法和anchor-free方法。在STD中,为应对有旋转角的box回归,提出了球形anchor,由于anchor没有角度的变化,直接将anchor数量减少50%,提高了计算效率。其他方法大都是anchor-free的方法,关于anchor-free的方法,推荐读一下kaiming大神的voteNet,比较好理解。

    • 关于roi pooling,一般是针对单个目标,再次提取更丰富、更具表达能力的特征,因此在不同论文中,根据实例提取特征方式的不同,提出了不同的roi pooling方法,如在STD中,提出了PointsPool,在Part aware and aggregation中,提出了Roi aware Point Cloud Pooling,在pv-rcnn[6]中提出了Roi grid Pooling。下面分别介绍一下。

      • PointsPool
        在这里插入图片描述
      1. 特征提取:在proposal中随机筛选N个点,1)获得第一阶段的点特征;2)获得N个点的坐标,并用canonical transformation得到与原坐标系无关的坐标特征。两种特征联合在一起,作为proposal中点的特征表达
      2. Voxel表达:将不同大小的proposal,通过voxel统一化到相同大小:dl = 6,dw = 6,dh = 6
      3. 使用VFE layer提取最终特征
      • Roi aware Point Cloud Pooling
        整体流程如下图所示,与STD中的pooling方法类似,首先将proposal分割成固定大小的voxel,如14×14×14,然后再提取voxel特征表达:
      1. RoIAwareMaxPool:使用的是第一阶段输出的point-wise semantic part feature,在voxel中计算max pooling
      2. RoIAwareAvgPool:使用的是proposal中经过canonical transformation点坐标特征和segmentation score,在voxel中计算avg pooling
      3. 最后将两组特征联合作为proposal的pooling特征。

      在这里插入图片描述

      • Roi grid pooling
        与上面两种pooling方法不同的是,并没有将proposal通过voxel得到固定大小的特征图,而是根据pv-rcnn中提出的key point信息,将proposal用6 * 6 * 6=216个grid points表达,grid points是从proposal中的key points均匀采样获得,且RoI-grid point features提取过程和key point feature提取过程是相似的。简单来说就是以grid point为中心,r为半径的区域内提取不同尺度、不同感受野的特征,最后在使用2层的MLP网络获得最终的特征表达,如图所示。
        在这里插入图片描述

      在这里插入图片描述

基于融合特征的目标检测方法

Waymo在最近的文章“End-to-End Multi-View Fusionfor 3D Object Detection in LiDAR Point Clouds”使用了融合特征的方式

  • lidar representation
    在这里插入图片描述 如图所示为multi-view feature fusion的流程,融合了3部分特征:bev feature(如图中绿色部分)、camera/range view feature(如图中黄色部分)、point-wise feature(如图中蓝色部分)。具体流程如下:
    • 对于原始点云,使用一个全连接层,获得point-wise feature。
    • 在point-wise feature的基础上,提取bev feature。提出了使用动态voxel(dynamic voxelization,DV)的方式获得bev图,计算过程如图3所示,相对传统的voxel(Hard voxelization,HV),有3个好处,1)DV保留了voxel中的所有点,HV使用随机采样的方法选取固定的点数,有可能会丢失重要信息,如下图中v1的计算;2)HV中每个voxel中选择固定的点数,且对整个点云选择固定的voxel数量,因此会随机丢弃点甚至整个voxel,这种方式可能导致不稳定的检测结果,如下图中v2在HV中被丢弃;3)HV对于点数少于固定值的voxel使用0填充,这样会造成额外的计算,如下图中v2~v4。最后对于点云的每一个点,使用公式(1)获得点与voxel的投影关系,其中pi表示点云坐标,vj表示voxel,FV表示点到voxel的投影关系。
      在这里插入图片描述
      在这里插入图片描述
    • 对于camera view,同样可以使用公式(1)计算得到。
    • bev图和camera view图经过一个cnn后,获得相应的bev feature与camera view feature,再使用公式(2)(其中,FP表示voxel feature到点云的投影关系,是FV的逆)逆投影获得不同view的点特征的表达,最后与point-wise feature融合得到最终的点特征表达。
  • network backbone与detection head使用了与pointpillar相同的参数,并在waymo公开的数据库与kitti上做了实验。仅分析一下waymo公开数据库的结果,如图4中的table1和table 2。从结果可以看出,使用DV替换HV,使整体结果提高2个多点,再增加point-wise feature后,车辆检测结果再提高3个多点,行人检测结果再提高4个点,说明voxel中的每个点对voxel特征表达都重要,不能随机丢弃,更不能随机丢弃整个voxel,更精细的特征对小尺度的目标表达有帮助。耗时方面,由于MVF使用了与两种方法相同的网络配置,而又增加了新的特征表达,整体耗时高了20多ms,如果再对网络做一些优化,这种融合的方法对结果的提升意义很大。
  • 21
    点赞
  • 101
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
YOLOv4是一种基于深度学习的目标检测算法,它可以在图像中快速而准确地识别目标。但是,对于激光雷达点云数据,需要进行适当的处理才能使用YOLOv4算法进行目标检测。 以下是使用YOLOv4完成激光雷达点云下的3D目标检测的步骤: 1. 数据预处理:将激光雷达点云数据转换为图像数据,通常使用三维空间中的投影方式将点云数据映射到二维图像上。在这个过程中需要考虑一些因素,例如相机的位置和方向以及图像的分辨率等。 2. 数据标注:对于用于训练模型的数据,需要进行标注。对于激光雷达点云数据,通常使用包围盒(bounding box)进行标注,即在点云中画出一个框框来表示目标物体的位置和大小。 3. 模型训练:使用标注好的数据训练YOLOv4模型。由于激光雷达点云数据的特殊性,需要对YOLOv4模型进行一些改进,例如将原来的卷积层换成点云处理模块等。 4. 模型测试:使用训练好的模型对新的激光雷达点云数据进行测试。模型会输出每个检测到的物体的位置和大小。 5. 后处理:对于检测到的物体,需要进行一些后处理。例如,可以使用非极大值抑制(NMS)算法来去除重叠的检测框。此外,还可以使用一些过滤器来排除掉不符合要求的检测结果。 总之,使用YOLOv4完成激光雷达点云下的3D目标检测需要进行数据预处理、数据标注、模型训练、模型测试和后处理等多个步骤。需要注意的是,在处理激光雷达点云数据时,需要考虑到数据的特殊性,并对模型进行适当的改进。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值