bzoj 2301: [HAOI2011]Problem b

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。



Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

 

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

 

Sample Input

2

2 5 1 5 1

1 5 1 5 2



Sample Output


14

3



HINT



100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000


我恨数论...莫比乌斯反演可以把复杂度变成O(n(b/k)),然后再优化请见下面链接一一
http://wenku.baidu.com/view/fbe263d384254b35eefd34eb.html

#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
using namespace std;
int mu[10000001],prime[10000001];
bool check[10000001]; 
int tot;
inline void findmu()
{
     memset(check,false,sizeof(check));
     mu[1]=1;
     int i,j;
     for(i=2;i<=10000000;i++)
     {
          if(!check[i])
          {
               tot++;
               prime[tot]=i;
               mu[i]=-1;
          }
          for(j=1;j<=tot;j++)
          {
               if(i*prime[j]>10000000)
                    break;
               check[i*prime[j]]=true;
               if(i%prime[j]==0)
               {
                    mu[i*prime[j]]=0;
                    break;
               }
               else
                    mu[i*prime[j]]=-mu[i];
          }
     }
}
int sum[10000001];
//找[1,n],[1,m]内互质的数的对数
inline long long solve(int n,int m)
{
     long long ans=0;
     if(n>m)
	      swap(n,m);
     int i,la=0;
     for(i=1;i<=n;i=la+1)
     {
          la=min(n/(n/i),m/(m/i));
          ans+=(long long)(sum[la]-sum[i-1])*(n/i)*(m/i);
     }
     return ans;
}
int main()
{
	 //freopen("b.in","r",stdin);
	// freopen("b.out","w",stdout);
     findmu();
     sum[0]=0;
     int i;
     for(i=1;i<=10000000;i++)
          sum[i]=sum[i-1]+mu[i];
     int a,b,c,d,k;
     int T;
     scanf("%d",&T);
     while(T--)
     {
          scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
          long long ans=0;
		  ans=solve(b/k,d/k)-solve((a-1)/k,d/k)-solve(b/k,(c-1)/k)+solve((a-1)/k,(c-1)/k);
          printf("%lld\n",ans);
     }
     return 0;
}


发布了406 篇原创文章 · 获赞 16 · 访问量 24万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览