Gensim加载预训练词向量模型bz2文件

Gensim加载预训练词向量模型bz2文件

  • gensim是一个用于主题建模、文档索引和相似性检索的 Python 库。它提供了实现各种自然语言处理算法的工具,支持包括TF-IDF,LSA,LDA,和word2vec在内的多种主题模型算法。

加载

import gensim,os
model = gensim.models.KeyedVectors.load_word2vec_format(os.path.join(data_path, 'util', 'sgns.sogou.bigram.bz2'), encoding = "utf-8")

获取词汇表

  • 获取词汇表
    vocab = model.index_to_key
    print(vocab[:5]) # [',', '的', '。', '\ue40c', '、']
    
  • 获取词汇表及索引
    vocab_dict = model.key_to_index
    print(list(vocab_dict.items())[:5]) # [(',', 0), ('的', 1), ('。', 2), ('\ue40c', 3), ('、', 4)]
    

获取词向量

  • 获取单个词的向量:

     vector = model['word'] # word是想要获取向量的词
    
  • 获取多个词的向量:

    words = ['word1', 'word2', 'word3']
    vectors = [model[word] for word in words if word in model.vocab]
    
  • 获取词汇表中的所有词和向量:

    for word in model.vocab:
        vector = model[word]
        # 可以对每个词和向量进行处理
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SS上善

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值