pyecharts显示K线、均线、成交量和MACD

 安装 Ta-lib:

    pip install Ta-lib

安装pyecharts:

    pip install pyecharts

    npm install -g phantomjs-prebuilt

安装图片保存插件:
    pip install pyecharts-snapshot
 

import pandas as pd
import numpy as np
import talib as ta
from decimal import Decimal

from pyecharts.charts import Kline, Line, Bar, Grid
from pyecharts.commons.utils import JsCode
from pyecharts import options as opts
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = NotebookType.JUPYTER_NOTEBOOK

# 精度计算
def digital_utils(temps):
    temps = str(temps)
    if temps.find('E'):
        temps = '{:.8f}'.format(Decimal(temps))
    nums = temps.split('.')
    if int(nums[1]) == 0:
        return nums[0]
    else:
        num = str(int(nums[1][::-1]))
        result = '{}.{}'.format(nums[0], num[::-1])
        return result

def sum_resampler(df):
    if df.shape[0] < 1:
        return float("nan")
    return np.sum(df)
def low_resampler(df):
    return np.min(df)
def high_resampler(df):
    return np.max(df)
def avg_resampler(df):
    return digital_utils(np.average(df))
def open_resampler(df):
    if df.shape[0] < 1:
        return float("nan")    
    return np.asarray(df)[0]
def close_resampler(df):
    if df.shape[0] < 1:
        return float("nan")    
    return np.asarray(df)[-1]
def volume_resampler(df):
    if df.shape[0] < 1:
        return float("nan")    
    volume = np.asarray(df)[-1] - np.asarray(df)[0]
    if volume < 1:
        return float("nan")
    return volume
# 根据tikt数据合成K线数据
def getKline(price, volume):
    data_close = price.resample('T', label='right').apply(close_resampler) # 1分钟聚合,使用最右边的index作为新的index
    data_open = price.resample('T', label='right').apply(open_resampler) # 1分钟聚合,使用最右边的index作为新的index
    data_high = price.resample('T', label='right').apply(high_resampler) # 1分钟聚合,使用最右边的index作为新的index
    data_low = price.resample('T', label='right').apply(low_resampler) # 1分钟聚合,使用最右边的index作为新的index
    data_volume = volume.resample('T', label='right').apply(volume_resampler) # 1分钟聚合,使用最右边的index作为新的index

    data = pd.concat([data_open, data_close, data_low, data_high, data_volume],axis=1)
    data.columns = ['open', 'close&#
【资源说明】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业毕设项目,作为参考资料学习借鉴。 3、本资源作为“参考资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研,自行调试。 基于echarts封装的H5移动端、门户网站股票行情图表合集(分时图、K线图MACD等技术指标附图).zip 基于echarts封装的H5移动端、门户网站股票行情图表合集(分时图、K线图MACD等技术指标附图).zip 基于echarts封装的H5移动端、门户网站股票行情图表合集(分时图、K线图MACD等技术指标附图).zip 基于echarts封装的H5移动端、门户网站股票行情图表合集(分时图、K线图MACD等技术指标附图).zip 基于echarts封装的H5移动端、门户网站股票行情图表合集(分时图、K线图MACD等技术指标附图).zip 基于echarts封装的H5移动端、门户网站股票行情图表合集(分时图、K线图MACD等技术指标附图).zip 基于echarts封装的H5移动端、门户网站股票行情图表合集(分时图、K线图MACD等技术指标附图).zip 基于echarts封装的H5移动端、门户网站股票行情图表合集(分时图、K线图MACD等技术指标附图).zip 基于echarts封装的H5移动端、门户网站股票行情图表合集(分时图、K线图MACD等技术指标附图).zip 基于echarts封装的H5移动端、门户网站股票行情图表合集(分时图、K线图MACD等技术指标附图).zip
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值