基于扩散模型语音驱动人物头像说话模型:DreamTalk

1 DreamTalk介绍

DreamTalk:由清华大学、阿里巴巴和华中科大共同开发的一个基于扩散模型让人物头像说话的框架。 能够根据音频让人物头像照片说话、唱歌并保持嘴唇的同步和模仿表情变化。这一框架具有以下特点:

  • DreamTalk能够生成高质量的动画,使人物脸部动作看起来非常真实。

  • 不仅嘴唇动作逼真,还能展现丰富的表情,使得动画更加生动。此外,DreamTalk还支持多种语言,无论是中文、英文还是其他语言,都能很好地同步。

  • DreamTalk还具有说话风格预测的功能,能够根据语音预测说话者的风格,并同步表情,使得动画更加贴近原始音频。

  • DreamTalk适用于多种场景,可以用于歌曲、不同类型的肖像,甚至在嘈杂环境中也能表现良好。

  • DreamTalk是一个具有创新技术的框架,能够为人物头像赋予说话和表情的能力,为多种领域带来更加生动和丰富的体验。

论文:https://arxiv.org/abs/2312.09767

GitHub:https://github.com/ali-vilab/dreamtalk

项目及演示:https://dreamtalk-project.github.io

2 DreamTalk工作原理

该项目在利用扩散模型在生成动态和表情丰富的说话头部方面取得突破。结合了以下几个关键组件来生成表情丰富的说话头部动画:

  • 去噪网络:这是核心组件之一,负责生成音频驱动的面部动作。去噪网络使用扩散模型来逐步去除噪声,从而生成清晰、高质量的面部表情。这个过程涉及从带有噪声的数据中逐步恢复出清晰的面部动作。

  • 风格感知的嘴唇专家:这个组件专注于提高嘴唇动作的表现力和准确性。它通过分析说话风格来引导嘴唇同步,确保生成的动画既自然又符合说话者的风格。

  • 风格预测器:为了消除对表情参考视频或文本的依赖,DreamTalk引入了一个基于扩散的风格预测器。这个预测器可以直接从音频预测目标表情,无需额外的表情参考视频或文本。

  • 音频和视频处理:处理音频输入,提取关键的音频特征,并将这些特征用于驱动面部动画。同时,它还能处理视频输入,以提取和模仿特定的表情和风格。

  • 数据和模型训练:为了实现这些功能,DreamTalk需要大量的数据来训练其模型,包括不同表情和说话风格的面部动画数据。通过这些数据,模型学习如何准确地生成与输入音频匹配的面部动作。

DreamTalk不仅能够处理和生成它在训练过程中见过的面部类型和表情,还能有效处理和生成它之前未见过的、来自不同数据集的面部类型和表情。 包括不同种族、年龄、性别的人物肖像,以及各种不同的表情和情绪。

3 DreamTalk部署及使用

3.1 conda环境准备

conda环境准备详见:annoconda

3.2 运行环境构建

git clone https://github
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智慧医疗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值