植物生长计算算法与分支模式解析
1. 植物生长模型
1.1 无分支模型
当植物的长度(或高度)$L$远大于其树干直径时,可采用一维模型。考虑区间$0 \leq x \leq L(t)$,其中$L(t)$随时间变化。左端点$x = 0$代表根,负责提供养分通量,为简化问题,不考虑根的生长,所以左边界固定。右端点$x = L(t)$对应植物的顶端,宽度远小于植物整体,可视为数学点,$L(t)$随时间增加,其增长率由$x = L(t)$处的代谢物浓度$R$决定,即:
$\frac{dL}{dt} = f(R)$ (2.1)
区间$0 < x < L(t)$对应分化细胞,负责将养分从根传导至顶端,假设养分处于液体溶液中,用$C$表示其浓度,它是$x$和$t$的函数,其演化由扩散 - 对流方程描述:
$\frac{\partial C}{\partial t} + u\frac{\partial C}{\partial x} = d\frac{\partial^2 C}{\partial x^2}$ (2.2)
其中$u$是流体速度,$d$是扩散系数。假设流体不可压缩且均匀填充木质部,可得$u = \frac{dL}{dt}$。方程(2.2)的边界条件为:
$x = 0 : C = 1$,$x = L(t) : d\frac{\partial C}{\partial x} = -g(R)C$ (2.3)
第二个边界条件表明从植物主体到分生组织的养分通量与浓度$C(L, t)$成正比,这是边界处质量交换的常规关系,即罗宾边界条件,$g(R)$表示该通量可由增殖细胞调节。
接下来推导$R$的演化方程,考虑分生组织宽度为
超级会员免费看
订阅专栏 解锁全文
623

被折叠的 条评论
为什么被折叠?



