植物生长的一维模型与计算算法解析
1 模型介绍
1.1 无分支情况
当植物的长度(或高度)$L$远大于其树干直径时,可采用一维模型。考虑区间$0 ≤ x ≤ L(t)$,其中$L(t)$随时间变化。左端点$x = 0$对应根,负责提供养分通量,通过边界条件体现,为简化问题,不考虑根的生长,所以左边界固定。右端点$x = L(t)$对应顶端,其宽度远小于植物整体,在模型中视为一个数学点,$L(t)$随时间增加,生长速率由$x = L(t)$处的代谢物浓度$R$决定,即:
$\frac{dL}{dt} = f(R)$
区间$0 < x < L(t)$对应分化细胞,负责将养分从根传导至顶端,假设养分处于液体溶液中,其浓度$C$是$x$和$t$的函数,其演化由扩散 - 对流方程描述:
$\frac{\partial C}{\partial t} + u\frac{\partial C}{\partial x} = d\frac{\partial^2 C}{\partial x^2}$
其中$u$是流体速度,$d$是扩散系数。假设流体不可压缩且均匀填充木质部,可得$u = \frac{dL}{dt}$。
边界条件为:
$x = 0 : C = 1, x = L(t) : d\frac{\partial C}{\partial x} = -g(R)C$
第二个边界条件表明从植物主体到分生组织的养分通量与浓度$C(L, t)$成正比,这是边界处质量交换的常规关系,即Robin边界条件,$g(R)$表示该通量可由增殖细胞调节。
接下来推导$R$的演化方程,考虑分生组织宽度为有限值$h$,则有:
$h\frac{
超级会员免费看
订阅专栏 解锁全文
19

被折叠的 条评论
为什么被折叠?



