1. torch.utils.data.Dataset:
一个抽象类, 所有其他类的数据集类都应该是它的子类。而且其子类必须重载两个重要的函数:len(提供数据集的大小)、getitem(支持整数索引)。
2. torch.utils.data.TensorDataset:
封装成tensor的数据集,每一个样本都通过索引张量来获得。
3. torch.utils.data.ConcatDataset:
连接不同的数据集以构成更大的新数据集。
4. torch.utils.data.Subset(dataset, indices):
获取指定一个索引序列对应的子数据集。
5. torch.utils.data.DataLoader:
torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=<function default_collate>, pin_memory =False, drop_last=False, timeout=0, worker_init_fn=None): 数据加载器。组合了一个数据集和采样器,并提供关于数据的迭代器。
6. torch.utils.data.random_split(dataset, lengths):
按照给定的长度将数据集划分成没有重叠的新数据集组合。
7. torch.utils.data.Sampler(data_source):
所有采样的器的基类。每个采样器子类都需要提供 iter 方法以方便迭代器进行索引和一个len方法 以方便返回迭代器的长度。
8. torch.utils.data.SequentialSampler(data_source):
顺序采样样本,始终按照同一个顺序。
9. torch.utils.data.RandomSampler(data_source):
无放回地随机采样样本元素。
10. torch.utils.data.SubsetRandomSampler(indices):
无放回地按照给定的索引列表采样样本元素。
11. torch.utils.data.WeightedRandomSampler(weights, num_samples, replacement=True):
无放回地按照给定的索引列表采样样本元素。
12. torch.utils.data.BatchSampler(sampler, batch_size, drop_last)::
在一个batch中封装一个其他的采样器。
13. torch.utils.data.distributed.DistributedSampler(dataset, num_replicas=None, rank=None):
采样器可以约束数据加载进数据集的子集。