torch.utils.data

1. torch.utils.data.Dataset:

        一个抽象类, 所有其他类的数据集类都应该是它的子类。而且其子类必须重载两个重要的函数:len(提供数据集的大小)、getitem(支持整数索引)。

2. torch.utils.data.TensorDataset

        封装成tensor的数据集,每一个样本都通过索引张量来获得。

3. torch.utils.data.ConcatDataset

         连接不同的数据集以构成更大的新数据集。

4. torch.utils.data.Subset(dataset, indices):

        获取指定一个索引序列对应的子数据集。

 5. torch.utils.data.DataLoader:

        torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=<function default_collate>, pin_memory =False, drop_last=False, timeout=0, worker_init_fn=None): 数据加载器。组合了一个数据集和采样器,并提供关于数据的迭代器。

6. torch.utils.data.random_split(dataset, lengths):

        按照给定的长度将数据集划分成没有重叠的新数据集组合。

7.  torch.utils.data.Sampler(data_source)

        所有采样的器的基类。每个采样器子类都需要提供 iter 方法以方便迭代器进行索引和一个len方法 以方便返回迭代器的长度。

8. torch.utils.data.SequentialSampler(data_source):

        顺序采样样本,始终按照同一个顺序。

9. torch.utils.data.RandomSampler(data_source)

        无放回地随机采样样本元素。

10. torch.utils.data.SubsetRandomSampler(indices):

        无放回地按照给定的索引列表采样样本元素。

11. torch.utils.data.WeightedRandomSampler(weights, num_samples, replacement=True)

        无放回地按照给定的索引列表采样样本元素。

12. torch.utils.data.BatchSampler(sampler, batch_size, drop_last)::

        在一个batch中封装一个其他的采样器。

13. torch.utils.data.distributed.DistributedSampler(dataset, num_replicas=None, rank=None)

        采样器可以约束数据加载进数据集的子集。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值