算法学习2

本文介绍了多个与数学和组合计算相关的算法,包括试除法求约数、约数个数、约数之和、最大公约数、欧拉函数、筛法求欧拉函数、快速幂、快速幂求逆元、扩展欧几里得算法、线性同余方程、高斯消元解线性方程组、组合数的多种计算方法以及Nim游戏。这些算法涉及了数论和组合数学的基础知识,对于理解数的性质和解决相关问题有重要作用。
摘要由CSDN通过智能技术生成

1 试除法求约数

在这里插入图片描述

#pragma warning(disable:4996)
#include<cstring>
#include<iostream>
using namespace std;
#include<vector>
#include<algorithm>
#include<queue>
using namespace std;
vector<int> get_divisors(int n)
{
	vector<int> res;
	for (int i = 1; i <= n / i; i++)
	{
		if (n % i == 0)
		{
			res.push_back(i);
			if (i != n / i)res.push_back(n / i);
		}
	}
	sort(res.begin(), res.end());
	return res;
}
int main()
{
	int n;
	cin >> n;
	while (n--)
	{
		int x;
		cin >> x;
		auto res = get_divisors(x);
		for (auto t : res)cout << t << ' ';
		cout << endl;
	}
	return 0;
}

在这里插入图片描述

2 约数个数

在这里插入图片描述

在这里插入图片描述

#pragma warning(disable:4996)
#include<cstring>
#include<iostream>
using namespace std;
#include<vector>
#include<algorithm>
#include<queue>
#include<unordered_map>
using namespace std;
typedef long long LL;
const int mod = 1e9 + 7;
int main()
{
	int n;
	cin >> n;
	unordered_map<int, int>primes;
	while (n--)
	{
		int x;
		cin >> x;
		for (int i = 2; i <= x / i; i++)
			while (x % i == 0)
			{
				x /= i;
				primes[i]++;
			}
		if (x > 1)primes[x]++;//大于更号x的质因子(n中最多包含一个大于sqrt(n)的质因子)
	}
	LL res = 1;
	for (auto prime : primes)res = res * (prime.second + 1) % mod;
	cout << res << endl;
	return 0;
}

在这里插入图片描述

3 约数之和

在这里插入图片描述

#pragma warning(disable:4996)
#include<cstring>
#include<iostream>
using namespace std;
#include<vector>
#include<algorithm>
#include<queue>
#include<unordered_map>
using namespace std;
typedef long long LL;
const int mod = 1e9 + 7;
int main()
{
	int n;
	cin >> n;
	unordered_map<int, int>primes;
	while (n--)
	{
		int x;
		cin >> x;
		for (int i = 2; i <= x / i; i++)
			while (x % i == 0)
			{
				x /= i;
				primes[i]++;
			} 
		if (x > 1)primes[x]++;//大于更号x的质因子(n中最多包含一个大于sqrt(n)的质因子)
	}
	LL res = 1;
	for (auto prime : primes)
	{
		int p = prime.first, a = prime.second;
		LL t = 1;
		while (a--)t = (t * p + 1) % mod;
		res = res * t % mod;
	}
	cout << res << endl;
	return 0;
}

在这里插入图片描述

4 最大公约数

在这里插入图片描述
在这里插入图片描述

#pragma warning(disable:4996)
#include<cstring>
#include<iostream>
using namespace std;
#include<vector>
#include<algorithm>
int gcd(int a, int b)
{
	return b ? gcd(b, a % b) : a;
}

int main()
{
	int n;
	scanf("%d", &n);
	while (n--)
	{
		int a, b;
		scanf("%d%d", &a, &b);
		printf("%d\n", gcd(a, b));
	}
	return 0;
}

5 欧拉函数

在这里插入图片描述
在这里插入图片描述

#pragma warning(disable:4996)
#include<cstring>
#include<iostream>
using namespace std;
int main()
{
	int n;
	cin >>n;
	while (n--)
	{
		int a;
		cin >> a;
		int res = a;
		for (int i = 2; i <= a / i;i++)
			if (a % i == 0)
			{
				res = res / i * (i - 1);
				while (a % i == 0)a /= i;
			}
		if (a > 1)res = res / a * (a - 1);
		cout << res << endl;
	}
	return 0;
}

在这里插入图片描述

6 筛法求欧拉函数

在这里插入图片描述

在这里插入图片描述

#pragma warning(disable:4996)
#include<cstring>
#include<iostream>
using namespace std;
const int N = 1000010;
int primes[N], cnt;//primes表示质因子
int phi[N];//互质的数的个数
bool st[N];
typedef long long LL;
LL get_eulers(int n)
{
	phi[1] = 1;
	for (int i = 2; i <= n; i++)
	{
		if (!st[i])
		{
			primes[cnt++] = i;
			phi[i] = i - 1;
		}
		for (int j = 0; primes[j] <= n / i; j++)
		{
			st[primes[j] * i] = true;
			if (i % primes[j] == 0)
			{
				phi[primes[j] * i] = phi[i] * primes[j];
				break;
			}
			phi[primes[j] * i] = phi[i] * (primes[j] - 1);
		}

	}
	LL res = 0;
	for (int i = 1; i <= n; i++)res += phi[i];
	return res;
}
int main()
{
	int n;
	cin >> n;
	cout << get_eulers(n) << endl;
	return 0;
}

在这里插入图片描述p为质数
在这里插入图片描述

7 快速幂

在这里插入图片描述

#pragma warning(disable:4996)
#include<cstring>
#include<iostream>
using namespace std;
typedef long long LL;
//a^k%p
int qmi(int a, int k, int p)
{
	int res = 1;
	while (k)
	{
		if (k & 1)res = (LL)res * a % p;
		k >>= 1;
		a = (LL)a * a % p;
	}
	return res;
}
int main()
{
	int n;
	scanf("%d", &n);
	while (n--)
	{
		int a, k, p;
		scanf("%d%d%d", &a, &k, &p);
		printf("%d\n", qmi(a, k, p));
	}
	return 0;
}

在这里插入图片描述
在这里插入图片描述

8 快速幂求逆元

在这里插入图片描述

#pragma warning(disable:4996)
#include<cstring>
#include<iostream>
using namespace std;
typedef long long LL;
//a^k%p   p是质数
int qmi(int a, int k, int p)
{
	int res = 1;
	while (k)
	{
		if (k & 1)res = (LL)res * a % p;
		k >>= 1;
		a = (LL)a * a % p;
	}
	return res;
}
int main()
{
	int n;
	scanf("%d", &n);
	while (n--)
	{
		int a, p;
		scanf("%d%d", &a, &p);
		int res = qmi(a, p - 2, p);
		if (a % p)printf("%d\n", res);
		else puts("impossible");
	}
	return 0;
}

在这里插入图片描述
在这里插入图片描述

9 扩展欧几里得算法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#pragma warning(disable:4996)
#include<cstring>
#include<iostream>
using namespace std;

int exgcd(int a, int b, int& x, int& y)
{
	if (!b)
	{
		x = 1, y = 0;
		return a;
	}
	int d = exgcd(b, a % b, y, x);
	y -= a / b * x;
	return d;
}
int main()
{
	int n;
	scanf("%d", &n);
	while (n--)
	{
		int a, b, x, y;
		scanf("%d%d", &a, &b);
		exgcd(a, b, x, y);
		printf("%d %d\n", x, y);
	}
	return 0;
}

10 线性同余方程

在这里插入图片描述在这里插入图片描述

#pragma warning(disable:4996)
#include<cstring>
#include<iostream>
using namespace std;
typedef long long LL;
int exgcd(int a, int b, int& x, int& y)
{
	if (!b)
	{
		x = 1, y = 0;
		return a;
	}
	int d = exgcd(b, a % b, y, x);
	y -= a / b * x;
	return d;
}
int main()
{
	int n;
	scanf("%d", &n);
	while (n--)
	{
		int a, b, x, y,m;
		scanf("%d%d%d", &a, &b,&m);
		int d=exgcd(a, m, x, y);
		if (b % d)puts("impossible");
		else printf("%d\n",(LL)x*(b/d)%m);
	}
	return 0;
}

在这里插入图片描述

11 高斯消元解线性方程组

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#pragma warning(disable:4996)
#include<cstring>
#include<iostream>
using namespace std;
const int N = 110;
const double eps = 1e-6;
int n;
double a[N][N];
int gauss()
{
	int c, r;//c列 r行
	for (c = 0, r = 0; c < n; c++)
	{
		int t = r;
		for (int i = r; i < n; i++)
			if (fabs(a[i][c]) > fabs(a[t][c]))
				t = i;
		if (fabs(a[t][c] < eps))continue;
		for (int i = c; i <= n; i++)swap(a[t][i], a[r][i]);
		for (int i = n; i >= c; i--)a[r][i] /= a[r][c];
		for (int i = r + 1; i < n; i++)
			if (fabs(a[i][c] > eps))
				for (int j = n; j >= c; j--)
					a[i][j] -= a[r][j] * a[i][c];
		r++;
	}
	if (r < n)
	{
		for (int i = r; i < n; i++)
			if (fabs(a[i][n]) > eps)
				return 2;//无解
		return 1;//有无穷多组解
	}
	for (int i = n - 1; i >= 0; i--)
		for (int j = i + 1; j < n; j++)
			a[i][n] -= a[i][j] * a[j][n];
	return 0;//有唯一解
}
int main()
{
	cin >> n;
	for (int i = 0; i < n; i++)
	{
		for (int j = 0; j < n + 1; j++)
			cin >> a[i][j];
	}
	int t = gauss();
	if (t == 0)
	{
		for (int i = 0; i < n; i++)printf("%.2lf\n", a[i][n]);
	}
	else if (t == 1)puts("Infinite group solutions");
	else puts("No solution");

	return 0;
}

12 求组合数1

在这里插入图片描述
在这里插入图片描述

#pragma warning(disable:4996)
#include<cstring>
#include<iostream>
using namespace std;
const int N = 2010, mod = 1e9 - 7;
int c[N][N];
void init()
{
	for (int i = 0; i < N; i++)
		for (int j = 0; j <= i; j++)
			if (!j)c[i][j] = 1;
			else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
}
int main()
{
	init();
	int n;
	scanf("%d", &n);
	while (n--)
	{
		int a, b;
		scanf("%d%d", &a, &b);
		printf("%d\n", c[a][b]);
	}

	return 0;
}

在这里插入图片描述

13 求组合数2

在这里插入图片描述
在这里插入图片描述

#pragma warning(disable:4996)
#include<cstring>
#include<iostream>
using namespace std;
typedef long long LL;
const int N = 100010, mod = 1e9 + 7;
int fact[N], infact[N];
int qmi(int a, int k, int p)
{
	int res = 1;
	while (k)
	{
		if (k & 1)res = (LL)res * a % p;
		a = (LL)a * a % p;
		k >>= 1;
	}
	return res;
}
int main()
{
	fact[0] = infact[0] = 1;
	for (int i = 1; i < N; i++)
	{
		fact[i] = (LL)fact[i - 1] * i % mod;
		infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2, mod) % mod;
	}
	int n;
	scanf("%d", &n);
	while (n--)
	{
		int a, b;
		scanf("%d%d", &a, &b);
		printf("%d\n", (LL)fact[a] * infact[b] % mod * infact[a - b] % mod);
	}
	return 0;
}

14 求组合数3

在这里插入图片描述
在这里插入图片描述

#pragma warning(disable:4996)
#include<cstring>
#include<iostream>
using namespace std;
typedef long long LL;
int p;
int qmi(int a, int k)
{
	int res = 1;
	while (k)
	{
		if (k & 1)res = (LL)res * a % p;
		a = (LL)a * a % p;
		k >>= 1;
	}
	return res;
}
int C(int a, int b)
{
	int res = 1;
	for (int i = 1, j = a; i <= b; i++, j--)
	{
		res = (LL)res * j % p;
		res = (LL)res * qmi(i, p - 2) % p;
	}
	return res;
}
int lucas(LL a, LL b)
{
	if (a < p && b < p)return C(a, b);
	return (LL) C(a % p, b % p) * lucas(a / p, b / p) % p;
}
int main()
{
	int n;
	cin >> n;
	while (n--)
	{
		LL a,b;
		cin >> a >> b >> p;
		cout << lucas(a, b) << endl;
	}
	return 0;
}

15 求组合数4

在这里插入图片描述
在这里插入图片描述

#pragma warning(disable:4996)
#include<cstring>
#include<iostream>
#include<vector>
using namespace std;

const int N = 5010;
int primes[N], cnt;
int sum[N];
bool st[N];
void get_primes(int n)
{
	for (int i = 2; i <= n; i++)
	{
		if (!st[i])primes[cnt++] = i;
		for (int j = 0; primes[j] <= n / i; j++)
		{
			st[primes[j] * i] = true;
			if (i % primes[j] == 0)break;
		}

	}
}
int get(int n, int p)
{
	int res = 0;
	while (n)
	{
		res += n / p;
		n /= p;
	}
	return res;
}
vector<int>mul(vector<int>a, int b)
{
	vector<int>c;
	int t = 0;
	for (int i = 0; i < a.size(); i++)
	{
		t += a[i] * b;
		c.push_back(t % 10);
		t /= 10;
	}
	while (t)
	{
		c.push_back(t % 10);
		t /= 10;
	}
	return c;
}
int main()
{
	int a, b;
	cin >> a >> b;
	get_primes(a);
	for (int i = 0; i < cnt; i++)
	{
		int p = primes[i];
		sum[i] = get(a, p) - get(b, p) - get(a - b, p);
	}
	vector<int>res;
	res.push_back(1);
	for (int i = 0; i < cnt; i++)
		for (int j = 0; j < sum[i]; j++)
			res = mul(res, primes[i]);
	for (int i = res.size() - 1; i >= 0; i--)printf("%d", res[i]);
	puts(" ");
	return	 0;
}

16 满足条件的01序列

在这里插入图片描述
在这里插入图片描述

#pragma warning(disable:4996)
#include<cstring>
#include<iostream>
#include<vector>
using namespace std;

typedef long long LL;
const int mod = 1e9 + 7;
int qmi(int a, int k, int p)
{
	int res = 1;
	while (k)
	{
		if (k & 1)res = (LL)res * a % p;
		a = (LL)a * a % p;
		k >>= 1;
	}
	return res;
}
int main()
{
	int n;
	cin >> n;
	int a = 2 * n, b = n;
	int res = 1;
	for (int i = a; i > a - b; i--)res = (LL)res * i % mod;
	for (int i = 1; i <= b; i++)res = (LL)res * qmi(i, mod - 2, mod) % mod;
	res = (LL)res * qmi(n + 1, mod - 2, mod) % mod;
	cout << res << endl;
	return	 0;
}

17 能被整除的数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#pragma warning(disable:4996)
#include<cstring>
#include<iostream>
#include<vector>
#include<algorithm>
#include<unordered_map>
using namespace std;
typedef long long LL;
const int N = 20;
int n, m;
int p[N];
int main()
{
	cin >> n >> m;
	for (int i = 0; i < m; i++)cin >> p[i];
	int res = 0;
	for (int i = 1; i < 1 << m; i++)
	{
		int t = 1, cnt = 0;
		for(int j=0;j<m;j++)
			if (i >> j & 1)
			{
				cnt++;
				if ((LL)t * p[j] > n)
				{
					t = -1;
					break;
				}
				t *= p[j];
			}
		if (t!= -1)
		{
			if (cnt % 2)res += n / t;
			else res -= n / t;
		}
	}
	cout << res << endl;

}

18 Nim游戏

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#pragma warning(disable:4996)
#include<cstring>
#include<iostream>
using namespace std;

int main()
{
	int n;
	int res = 0;
	scanf("%d", &n);
	while (n--)
	{
		int x;
		scanf("%d", &x);
		res ^= x;
	}
	if (res)puts("Yes");
	else puts("No");

	return 0;

}

19 集合–Nime游戏

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#pragma warning(disable:4996)
#include<cstring>
#include<iostream>
#include<unordered_set>
using namespace std;
const int N = 110, M = 10010;
int n, m;
int s[N], f[M];

int sg(int x)
{
	if (f[x] != -1)return f[x];
	unordered_set<int>S;
	for (int i = 0; i < m; i++)
	{
		int sum = s[i];
		if (x >= sum)S.insert(sg(x - sum));
	}
	for (int i = 0; ; i++)
		if (!S.count(i))
			return f[x] = i;

}
int main()
{
	cin >> m;
	for (int i = 0; i < m; i++)cin >> s[i];
	cin >> n;
	memset(f, -1, sizeof f);
	int res = 0;
	for (int i = 0; i < n; i++)
	{
		int x;
		cin >> x;
		res ^= sg(x);
	}
	if (res)puts("Yes");
	else puts("No");
	return 0;

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值