1.计算机视觉。在计算机视觉领域,深度神经网络最令人瞩目的成绩就是ImageNet竞赛。
包括人脸识别,目标检测等具体的图形图像处理
2.语音识别和合成。在语音识别领域,包括智能家居,语音助手等识别软件。
3.自然语言处理NLP。深度学习主要用于语义分析等任务,主要基于统计的模型。
4.机器翻译。
5.自动驾驶。
6.医学。在医学领域,深度学习是一项最新引入的研究方法,它作为一种成熟的图像处理技术主要用于医学影像识别任务。
7.游戏领域。著名的就是DeepMind公司创造的人工智能围棋冠军AlphaGo。
深度学习当前面临的问题和挑战:
- 需要大量数据
- 概念表达能力不足,不能迁移
- 没有自然方式来处理层级架构
- 无法开发推理
- 不够透明
- 没和先验知识结合
- 无法区分因果关系和相关关系
- 假设是稳定的环境
- 是近似,不能完全相信
- 很难工程化
未来:
本质上来讲,深度学习是一种统计技术,有优势和局限。不是一个普遍的解决方案,它是众多人工智能工具中的一个。
- 应用于无监督学习
- 符号处理和混合模型
- 认知和心理学启发
- 更强大的理解力
- 物理化测试机器人,不是不断的试错
自然智能是多维度复杂的,通用人工智能也必须是多维度的。通过推进超越感知分类,进入推理和知识更宽泛的整合,使得人工智能有更巨大的进步。