深度学习的典型应用和挑战及未来

1.计算机视觉。在计算机视觉领域,深度神经网络最令人瞩目的成绩就是ImageNet竞赛。

包括人脸识别,目标检测等具体的图形图像处理

2.语音识别和合成。在语音识别领域,包括智能家居,语音助手等识别软件。

3.自然语言处理NLP。深度学习主要用于语义分析等任务,主要基于统计的模型。

4.机器翻译。

5.自动驾驶。

6.医学。在医学领域,深度学习是一项最新引入的研究方法,它作为一种成熟的图像处理技术主要用于医学影像识别任务。

7.游戏领域。著名的就是DeepMind公司创造的人工智能围棋冠军AlphaGo。

深度学习当前面临的问题和挑战:

  • 需要大量数据
  • 概念表达能力不足,不能迁移
  • 没有自然方式来处理层级架构
  • 无法开发推理
  • 不够透明
  • 没和先验知识结合
  • 无法区分因果关系和相关关系
  • 假设是稳定的环境
  • 是近似,不能完全相信
  • 很难工程化

未来:

本质上来讲,深度学习是一种统计技术,有优势和局限。不是一个普遍的解决方案,它是众多人工智能工具中的一个。

  1. 应用于无监督学习
  2. 符号处理和混合模型
  3. 认知和心理学启发
  4. 更强大的理解力
  5. 物理化测试机器人,不是不断的试错

自然智能是多维度复杂的,通用人工智能也必须是多维度的。通过推进超越感知分类,进入推理和知识更宽泛的整合,使得人工智能有更巨大的进步。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机刘老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值