关于SVM的合页损失函数与原始最优化问题等价性的证明

这篇博客深入探讨了SVM的合页损失函数与原始最优化问题的等价性证明。作者指出李航老师书中关于等价性的表述可能不够清晰,并提供了一个详细的解释。通过分析1−yi(w⋅xi+b)的两种情况,当其大于等于0时,等式成立;小于0时,样本点不在超平面上,松弛变量ξi为0,满足不等式约束。通过对合页损失函数的讨论,进一步证明了等价性。
摘要由CSDN通过智能技术生成

李航老师的书中写的不是很详细,想了一番参考了一下这个博客,终于明白了这个等价性是怎么来的。

原始最优化问题

在这里插入图片描述

合页损失函数

在这里插入图片描述

等价性证明

书中,令
在这里插入图片描述
实际上我觉得这个表述不对,等式应该直接按后文书中给出的,如下表示:
[ 1 − y i ( w ⋅ x i + b ) ] + = ξ i , ξ i ⩾ 0 ( 7.641 ) \left[1-y_{i}\left(w \cdot x_{i}+b\right)\right]_{+}=\xi_{i}, \quad \xi_{i} \geqslant 0 \qquad (7.641) [1yi(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值