QMT/PTrade

本文介绍了量化交易软件QMT,强调其PythonAPI的使用、历史数据处理、算法交易和风控功能。同时,提到了PTrade的智能交易特性,如程序化策略、个性化工具和条件单支持。两者均支持自定义策略,适用于股票、期货等多种交易场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

量化交易软件的选择因人而异,取决于投资者的需求和偏好。以下是一些被广泛认为最好用的量化交易软件:

QMT:算法交易(简称 Algo Trading)。QMT能够帮助您捕捉市场趋势,发现交易机会,从而做出更加明智的投资决策。

恒生Pro-Trade:智能交易,通过全新客户体验打造的一体化智能策略交易平台,被誉为“极速、智能、策略、专业”。

QMT

迅投 QMT 极速策略交易系统,以下简称 QMT 系统,本文主要介绍 QMT 系统 Python API 的使用方法。内容较多, QMT 系统与其他普通股票软件最大的不同点就是其提供历史数据下载、模型编辑、模型回测、模型交易、算法交易及交易风控等完整量化交易功能。通过 QMT 系统,用户可以快速的将自己的转化为计算 机代码,形成自己的交易策略,让计算机帮助用户实现策略的回测检验并实现无人值守自动化交易。

量化策略编写语言的支持上,QMT 系统目前支持两种:VBA 和 Python 。在后续的规划中,QMT 系 统将全面支持市面上主流的量化编程语言。

快速交易终端:

■ 全内存交易,单笔延时小于1ms,满足极速交易

快速行情支持:

■ 全面超越订阅式行情的超高压缩实时全推行情

■ 支持历史TICK数据展示、盘口回放

专业交易方式:

■ 支持普通交易、组合交易、ETF交易等多种专业交易工具

■ 内置标准算法交易、随机量交易,有效承接大额交易,隐藏交易行为

策略交易:

■ 支持VBA和Python双语言开发策略编写、回测、模拟交易、自动化实盘交易

■ 提供量化选股、择时、指数增强等多种策略模板研究,内置网格交易等成熟策略

专业风险控制:

■ 全内存多层次并行风控,大幅降低交易延迟、提高风控执行效率

■ 支持交易合规、交易量价、资产比例等风控,严控投资风险

QMT优势

高度集成一体化:迅投QMT将行情显示、投资研究、产品交易等功能集于一身,为用户提供一站式的综合服务。

自行编写策略:投资者可以根据自己的交易需求,在迅投QMT平台上灵活地定制交易策略,实现个性化的交易。并且可以自行开发策略、回测策略、实盘交易

■ 支持VBA和Python双语言开发策略编写、回测、模拟交易、自动化 实盘交易
■ 提供 量化选股、择时、 指数增强等多种策略模板研究,内置网格交易等成熟策略

广泛的适用场景:迅投QMT适用于多种交易场景,如股票、期货、期权等,满足用户不同的交易需求。

QMT六大亮点功能

PTrade

Ptrade智能交易终端是一款面向高净值个人客户及专业机构的一体化智能交易终端, 支持程序化策略交易、日内回转交易、普通交易、策略模型交易等功能场景。

PTrade拥有丰富的个性化交易工具支持智能算法工具:ETF趋势交易、策略交易、网格交易、篮子交易、追涨停、抢单交易、盘口扫单等

条件单:支持价格埋单、时间埋单、止盈止损埋单、拐点交易等。以智能条件单工具为主,可对标东方财富、通达 信、同花顺收费版,较容易上手。

PTrade特色功能

03-12
<think>好的,用户的问题是关于QMT(Quantitative Trading Platform)、quantmod和trader的。首先需要明确用户的具体需求。QMT是迅投公司开发的量化交易平台,主要用于A股市场。而quantmod是R语言中一个用于量化金融分析的包,常用于数据获取、可视化和技术分析。用户可能想知道如何将quantmod与QMT结合使用,或者如何在QMT中实现类似quantmod的功能。 需要确认QMT是否支持R语言的集成。查阅资料发现,QMT主要支持Python和VBA,而quantmod是R的包,因此直接集成可能有难度。可能需要通过其他方式在QMT中使用R代码,比如调用外部脚本或者使用中间件进行通信。 接下来,考虑用户提到的“trader”,可能是指实际的交易执行部分。用户可能希望了解如何在QMT中实现策略回测和自动化交易。需要查找QMT的API文档,了解其交易函数和回测框架的结构。例如,QMT提供XtTrader和XtQuant等模块,用于连接交易接口和数据获取。 然后,整合信息。用户可能需要将quantmod的分析结果应用到QMT的交易策略中。可能的解决方案包括:使用R进行数据分析后导出结果,再用Python读取并执行交易;或者使用Python的类似库(如pandas、TA-Lib)替代quantmod,直接在QMT的策略中实现分析。 此外,需要检查QMT的API是否支持实时数据获取和订提交。例如,XtQuant提供历史数据获取函数get_market_data,而XtTrader处理订。代码示例可能涉及初始化交易接口、订阅数据、计算指标、生成交易信号等步骤。 最后,确保回答符合格式要求:分步骤、无第一人称、代码和公式正确格式化,并在最后添加相关问题。相关问题应围绕QMT的功能扩展、quantmod替代方案以及策略部署问题展开。</think>QMT(迅投量化交易平台)与quantmod的结合应用涉及数据获取、策略开发和交易执行三个核心环节。以下是实现量化交易的关键方法: --- **数据对接与处理** 通过XtQuant模块获取实时行情数据,使用Python的pandas进行数据处理: ```python from xtquant import xtdata data = xtdata.get_market_data(['000001.SZ'], period='1d') df = data.to_dataframe().reset_index() ``` **技术指标计算** 替代quantmod的技术分析方法,使用TA-Lib实现MACD指标计算: ```python import talib df['macd'], df['signal'], _ = talib.MACD(df['close'], fastperiod=12, slowperiod=26, signalperiod=9) ``` **交易策略实现** 构建双均线策略并通过XtTrader执行: ```python from xtquant.xttrader import XtQuantTrader class Strategy: def on_tick(self): short_ma = df['close'].rolling(5).mean() long_ma = df['close'].rolling(20).mean() if short_ma.iloc[-1] > long_ma.iloc[-1]: XtQuantTrader.order_stock('000001.SZ', 'BUY', 1000) else: XtQuantTrader.order_stock('000001.SZ', 'SELL', 1000) ``` --- **回测验证** 使用QMT内置回测框架验证策略有效性,核心评价指标包括: - 年化收益率:$R_{annual} = (1 + R_{total})^{252/N} - 1$ - 夏普比率:$Sharpe = \frac{E[R_p - R_f]}{\sigma_p}$ - 最大回撤:$MDD = \max_{0≤i<j≤T}(P_i - P_j)/P_i$ ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值