数据结构与算法 - AVL树

一、概述

1. 历史

AVL树是一种自平衡二叉搜索树,由托尔·哈斯特罗姆在1960年提出并在1962年发表。它的名字来源于发明者的名字:Adelson-Velsky和Landis,他们是苏联数学家,于1962年发表了一篇论文,详细介绍了AVL树的概念和性质。

在二叉搜索树中,如果插入的元素按照特定的顺序排列,可能会导致树变得非常不平衡,从而降低搜索、插入和删除的效率。为了解决这个问题,AVL树通过在每个节点中维护一个平衡因子来确保树的平衡。平衡因子是左子树的高度减去右子树的高度。如果平衡因子的绝对值大于等于2,则通过旋转操作来重新平衡树。

AVL树是用于存储有序数据的一种重要数据结构,它是二叉搜索树的一种改进和扩展。它不仅能提高搜索、插入和删除操作的效率,而且还能够确保树的深度始终保持在O(log n)的水平。随着计算机技术的不断发展,AVL树已经成为了许多高效算法和系统中必不可少的一种基础数据结构。

前面介绍过,如果一棵二叉搜索树长的不平衡,那么查询的效率会受到影响,如下图

通过旋转可以让树重新变得平衡,并且不会改变二叉搜索树的性质(即左边仍然小,右边仍然大)

2. 如何判断失衡

如果一个节点的左右孩子,高度差超过1,则此节点失衡,才需要旋转。

3. 处理高度

如何得到节点高度?一种方式之前做过的一道题目:求二叉树的最大深度(高度),但由于求高度是一种非常频繁的操作,因此将高度作为节点的一个属性,将来新增或删除时及时更新,默认为1

    static class AVLNode {
        int key;
        Object value;
        AVLNode left;
        AVLNode right;
        int height = 1;  // 高度

        public AVLNode(int key) {
            this.key = key;
        }

        public AVLNode(int key, Object value) {
            this.key = key;
            this.value = value;
        }

        public AVLNode(int key, Object value, AVLNode left, AVLNode right) {
            this.key = key;
            this.value = value;
            this.left = left;
            this.right = right;
        }
    }

求高度

这里加入了height函数方便求节点为null时的高度

    // 求节点的高度
    private int height(AVLNode node) {
        return node == null ? 0 : node.height;
    }

更新高度

将来新增、删除、旋转时,高度都可能发生变化,需要更新。

    // 更新节点高度(新增、删除、旋转)
    private void updateHeight(AVLNode node) {
        node.height = Integer.max(height(node.left), height(node.right)) + 1;
    }

4. 何时触发失衡判断

定义平衡因子(balance factor)如下

平衡因子 = 左子树高度 - 右子树高度

当平衡因子

  • bf = 0, 1, -1时,表示左右平衡
  • bf > 1时,表示左边太高
  • bf < -1时,表示右边太高
    /**
     * 平衡因子 balance factor = 左子树高度 - 右子树高度
     * bf = 0, 1, -1时,表示左右平衡
     * bf > 1时,表示左边太高
     * bf < -1时,表示右边太高
     * @param node
     * @return
     */
    private int bf(AVLNode node) {
        return height(node.left) - height(node.right);
    }

当插入新节点时,或删除节点时,引起高度变化时,例如

目前此树平衡,当再插入一个4时,节点们的高度都产生了相应的变化,8节点失衡了

再比如说,下面这棵树一开始也是平衡的

当删除节点8时,节点们的高度都产生了相应的变化,6节点失衡了

5. 失衡的四种情况

LL

  • 失衡节点的bf > 1,即左边更高
  • 失衡节点的左孩子bf >= 0,即左孩子这边也是左边更高或等高

LR

  • 失衡节点的bf > 1,即左边更高
  • 失衡节点的左孩子的 bf < 0,即左孩子这边是右边更高

RL

  • 失衡节点的 bf < -1,即右边更高
  • 失衡节点的右孩子的bf > 0,即右孩子这边左边更高

RR

  • 失衡节点的bf < -1,即右边更高
  • 失衡节点的右孩子的 bf <= 0,即右孩子这边右边更高或等高

二、实现

1. 解决失衡

失衡可以通过树的旋转解决。什么是树的旋转呢?它是在不干扰元素顺序的情况下更改结构,通常用来让树的高度变得平衡。

观察下面一棵二叉搜索树,可以看到,旋转后,并未改变树的左小右大特性,但根、父、孩子节点都发生了变化

LL - 右旋

旋转前

  • 红色节点,旧根(失衡节点)
  • 黄色节点,旧根的左孩子,将来作为新根,旧根是它右孩子
  • 绿色节点,新根的右孩子,将来要换爹作为旧根的左孩子

旋转后

代码:

    /**
     * 右旋
     * @param red 要旋转的节点(失衡)
     * @return 新的根节点
     */
    private AVLNode rightRotate(AVLNode red) {
        AVLNode yellow = red.left;
        // AVLNode green = yellow.right;
        red.left = yellow.right;  // 换爹
        yellow.right = red;  // 上位
        

        // 更新节点高度
        updateHeight(red);
        updateHeight(yellow);

        return yellow;
    }

RR - 左旋 

旋转前

  • 红色节点,旧根(失衡节点)
  • 黄色节点,旧根的右孩子,将来作为新根,旧根是它左孩子
  • 绿色节点,新根的左孩子,将来要换爹作为旧根的右孩子

旋转后

代码:

    /**
     * 左旋
     * @param red 要旋转的节点(失衡)
     * @return 新的根节点
     */
    private AVLNode leftRotate(AVLNode red) {
        AVLNode yellow = red.right;
        red.right = yellow.left;
        yellow.left = red;

        // 更新节点高度
        updateHeight(red);
        updateHeight(yellow);

        return yellow;
    }

LR - 左右旋

指先旋转左子树,再右旋根节点(失衡),这时一次旋转并不能解决失衡

左子树旋转后 - 左旋

根右旋前

根右旋后

代码:

    /**
     * 左右旋
     * 先左旋左子树,再右旋根节点
     * @param root
     * @return
     */
    private AVLNode leftRightRotate(AVLNode root) {
        root.left = leftRotate(root.left);
        return rightRotate(root);
    }

RL - 右左旋

指先右旋右子树,再左旋根节点(失衡)

右子树右旋后

根左旋前

根左旋后

代码:

    /**
     * 右左旋
     * 先右旋右子树,再左旋根节点
     * @param root
     * @return
     */
    private AVLNode rightLeftRotate(AVLNode root) {
        root.right = rightRotate(root.right);
        return leftRightRotate(root);
    }

判断及调整平衡

    /**
     * 判断及调整平衡代码
     * @param node
     * @return
     */
    private AVLNode balance(AVLNode node) {
        if(node == null) {
            return null;
        }

        int bf = bf(node);
        if(bf > 1 && bf(node.left) >= 0) {
            // LL - 右旋
            return rightRotate(node);
        } else if(bf > 1 && bf(node.left) < 0) {
            // LR - 左右旋
            return leftRightRotate(node);
        } else if(bf < -1 && bf(node.right) > 0) {
            // RL - 右左旋
            return rightLeftRotate(node);
        } else if(bf < -1 && bf(node.right) <= 0) {
            // RR - 左旋
            return leftRotate(node);
        }

        return node;
    }

以上四种旋转代码里,都需要更新高度,需要更新的节点是红色、黄色,而绿色节点高度不变

2. 新增

    /**
     * 新增节点
     * @param key
     * @param value
     */
    public void put(int key, Object value) {
        root = doPut(root, key, value);
    }

    private AVLNode doPut(AVLNode node, int key, Object value) {
        // 1. 找到空位,创建新结点返回
        if(node == null) {
            return new AVLNode(key, value);
        }

        // 2. key已有,更新
        if(key == node.key) {
            node.value = value;
            return node;
        }
        // 3. 继续查找
        if(key < node.key) {
            node.left = doPut(node.left, key, value);
        } else {
            node.right = doPut(node.right, key, value);
        }
        // 更新节点高度
        updateHeight(node);
        // 重新调整二叉搜索树
        return balance(node);
    }

3. 删除

    /**
     * 删除节点
     * @param key
     */
    public void remove(int key) {
        root = doRemove(root, key);
    }

    private AVLNode doRemove(AVLNode node, int key) {
        // 1. node == null
        if(node == null) {
            return null;
        }

        // 2. 没找到key
        if(key < node.key) {
            node.left = doRemove(node.left, key);
        } else if(node.key < key) {
            node.right = doRemove(node.right, key);
        } else {
            // 3. 找到key 1)没有孩子节点 2)只有一个孩子 3)有两个孩子
            if(node.left == null && node.right == null) {
                // 情况1 没有孩子节点
                return null;
            } else if(node.left == null) {
                // 情况2 只有右孩子
                node = node.right;
            } else if(node.right == null) {
                // 情况3 只有左孩子
                node = node.left;
            } else {
                // 情况4 有两个孩子
                AVLNode s = node.right;
                while(s.left != null) {
                    s = s.left;
                }
                s.right = doRemove(node.right, s.key);
                s.left = node.left;
                node = s;
            }
        }
        
        // 4. 更新高度
        updateHeight(node);
        // 5. 检查是否失衡
        return balance(node);
    }

4. 查询

    /**
     * 根据key查询节点的value值
     * @param key
     * @return
     */
    public Object get(int key) {
        return doGet(root, key);
    }

    private Object doGet(AVLNode node, int key) {
        if(node == null) {
            return null;
        }
        if(key < node.key) {
            return doGet(node.left, key);
        } else if(node.key < key) {
            return doGet(node.right, key);
        } else {
            return node.value;
        }
    }

5. 小结

AVL树的优点:

  • AVL树是一种自平衡树,保证了树的高度平衡,从而保证了树的查询和插入操作的时间复杂度均为O(log n)
  • 相比于一般二叉搜索树,AVL树对查询效率的提升更为显著,因为其左右子树高度的差值不会超过1,避免了二叉搜索树退化为链表的情况,使得整棵树的高度更低
  • AVL树的删除操作比较简单,只需要像插入一样旋转即可,在旋转过程中树的平衡性可以得到维护

AVL树的缺点:

  • AVL树每次插入和删除节点时可能需要进行旋转操作,这个操作比较耗时,因此在一些应用中不太适用
  • 在AVL树进行插入或删除操作时,为保持树的平衡需要不断进行旋转操作,在一些高并发环节和大数据量环境下,这可能会导致多余的写锁导致性能瓶颈
  • AVL树的旋转操作相对较多,因此在一些应用中可能会造成较大的空间浪费。

  • 11
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值