SegAN——蠢的一匹的个人翻译

标题:segan:对抗网络,拥有多尺度l1loss,用于医疗图像分割

 

摘要:新的端对端对抗网络segan。图像分割需要西密度,像素级的label,单个标量的真/假的gan的DC的输出可能是不充分的,而不能生产稳定而有效的梯度回馈给网络。

我们用了FCN网络作为分割器,来生成分割的label,并用一个新的对抗critic(批评)网络(多尺度l1loss)来强制DC和分割器来学习both全局和局部特征,来生成长和短范围的spatial(空间)关系,在像素间的。在网络中,S和C网络并训练,通过min-max game:C网络输入图像(原始*pred label,原始图像*ground truth label)。然后训练,通过最大化一个loss。S网络只用梯度——通过C网络的梯度,意在与最小化loss。我们展示了,这样一个segan更加有效并且文档,对于分割任务,而且导致更好的表示,比state of art的unet更好

 

在miccai brats brain tumor上测试。拓展实验结果显示了segan的效果。

2013:更好的precision和sensitivity。

2015:更好的dcie和precision

 

1.介绍:

基础问题图像分割。

许多理论框架被用于自动分割。FCN。encoder-decoder。CRF。

基于patch的训练代价很高,局部准确和块大小也有关。现在最好的像unet,在整个图像或大的图像块,使用跨越链接来联合多等级的特征。然而,这些方式始终被像素级的loss限制。缺少能力来加强学习多尺度空间信息。与基于块的训练相比,整个图像的问题是label和class是不平衡的。属于整个图像的不同类的迅速是不平衡的。为了平衡整个问题,unet使用了weighted croos entropy来平衡类的频率。然而,权重的选择与任务相关而且难以优化。与unet相反,一个通用的loss能够避免类不平衡以及额外的超参数会更合理。

在本文中。我们使用了新的e2e的对抗网络结果SEGAN。

——与传统的分离G和D的loss不同,我们用了一个新的loss同时为了S和C。我们的C用来最大化l1,同时考虑cnn特征的不同,预测和truth的不同。

——我们使用了FCN作为S,只用C传来的梯度进行训练。同时最小化C的同样的loss。

——SEGAN是e2e,不需要patch或者更多的平滑化(crf)

我们的网络用了新loss,能加强多等级特征的学习,更加直接和有效。

 

2.方法:

S:输出pred

C:输入有两个,原始图像+pred mask;原始图像+truthmask。

S和C交替训练,用对抗方法。S意在于最小化L1,二C在于最大化L1

 

2.1:Loss:MAE

 

2.2结构:

S:unet

C:类似于S的decoder。多等级特征被从C的多个层中提取,用来算loss。因此可以获得长和短程的空间联系——于像素之间的。(pixel,low-superpixels,middle-patches)

 

 

2.3训练segan:

RMSProp(bs64,lr0.00002)

用梯度搜索法来选择最佳的block的数量

 

2.4稳定和收敛的基础:

a.引入注释

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值