读论文2018 ACL A unified model for extractive and abstractive summarization using inconsistency loss

该论文提出了一种结合抽取式和生成式优点的文本摘要模型,通过句子级和词级注意力的联合,以及引入不一致性损失函数,实现了在CNN/Daily Mail数据集上的最优ROUGE分数,同时在人工评估中获得信息完整性和可读性的最佳结果。
摘要由CSDN通过智能技术生成

Abstract

提出了一个兼具抽取式和生成式优点的摘要模型。一方面,简单的抽取式模型可以包含句子级别的attention,且句子集合的ROUGE分数很高,但句子可读性差。另一方面,一个非常复杂的摘要模型可以包含句子级别动态计算的注意力来生成一个可读的段落。本论文提出的模型:句子级别的注意力被用来改善词级别的注意力,如在句子中参与少的词生成的概率更少。此外,inconsistency loss function被用来惩罚词级别注意力和句子级别注意力的不一致。用inconsistency loss和original loss训练end-to-end该extractive and abstractive 模型,得到了state-of-the-art的ROUGE分数,而且在CNN/Daily Mail数据集的solid human evaluation评测的摘要结果中,包含信息量和可读性最好的。

introduction

Text summarization is the task of automatically condensing a piece of text to a shorter version while maintaining the important points. The ability to condense text information can aid many applications such as creating news digests, presenting search results, and generating reports. There
are mainly two types of approaches: extractive and abstractive. Extractive approaches assemble summaries directly from the source text typically
selecting one whole sentence at a time. In contrast, abstractive approaches can generate novel words and phrases not copied from the source text.
抽取式缺点是incoherent且not concise;生成式缺点是lose/mistake facts
所以生成式可以比抽取式更加连贯简明。抽取式方法更简单,已有很多工作集中于抽取式摘要。其中Nallapati2017年的摘要工作ROUGE分数最高;另一方面,生成式方法包含了复杂的神经网络用以概述,生成不在源文本中的词,其中attentional encoder-decoder模型能生成ROUGE分数较高的摘要,但是生成式摘要有错误信息并且无法处理OOV问题。最近See 2017提出了pointer-generator模型不但生成源文本中不在的词而且从源文档中复制词。尽管生成式摘要取得了很多进步,但是抽取式方法和Lead-3方法依旧在ROUGE测试中表现优异。
本论文明确提出综合利用目前表现最好的抽取式和生成式的优点的摘要模型。首先,我们把抽取式方法(Nallapati 2017)计算的每个句子的概率作为句子级别的attention,其次

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值