九月份第三周论文笔记
这周读的是《A DEEP REINFORCED MODEL FOR ABSTRACTIVE SUMMARIZATION》这篇文章,作者主要有两个创新点:提出了改进的注意力机制intra-attention;将强化学习的方法加入到了模型的训练过程中,提高抽取式摘要的可读性
模型还是基于经典的encoder-decoder架构:绿色向量C是将encoder每一步的隐层输出做注意力加权得到的;蓝色向量C则是decoder当前步之前所有的隐层输出加权得到的;H代表的是当前步的隐层输出;三者做向量的拼接操作得到对应的特征向量进行下一个词的预测。

Intra-attention介绍
先介绍intra-attention:所谓intra-attention即我们之前介绍的self-attention,主要有两种方式分别为加法attention和乘法attention,其计算过程如下:本文中采用的乘法attention,并进行了改进。


本文介绍了《A DEEP REINFORCED MODEL FOR ABSTRACTIVE SUMMARIZATION》的研究,主要创新在于改进的intra-attention机制和应用强化学习优化摘要生成。模型基于encoder-decoder架构,利用改进的乘法attention和自我注意力。通过强化学习策略梯度下降法训练,以ROUGE-1系数作为奖励,缓解暴露偏差问题。
最低0.47元/天 解锁文章
799

被折叠的 条评论
为什么被折叠?



