【地图学】高斯-克吕格(Gauss-Kruger)投影原理、应用详解(3°带、6°带)

本文详细介绍了高斯-克吕格(Gauss-Kruger)投影,这是一种等角横切椭圆柱投影,适用于大比例尺地形图。在中央经线上无变形,但随着远离中央经线和纬度增加,变形增大。在中国,50万比例尺以上的地形图广泛采用这种投影。文章还提及了投影的分带和使用的平面直角坐标系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、高斯克吕格投影概述


德国数学家、物理学家、天文学家高斯于19 世纪20 年代拟定,后经德国大地测量学家克吕格于1912 年对投影公式加以补充,故称为高斯-克吕格投影(Gauss-Kruger,简称GK),又名"等角横切椭圆柱投影”。中央经线和赤道投影为相互垂直的直线,其它经线均为对称于中央经线、并收敛于两极的凹向曲线;纬线为对称于赤道并弯向两极的凸形曲线,经纬线呈直角相交。

二、高斯---克吕格投影的特点


1. 中央经线上没任何变形;

2. 除中央经线上的长度比为1外,其他任何点上长度比均大于1;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刘一哥GIS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值