计算复杂性理论初步(一)多项式时间归约

一、归约的意义

求解一个算法问题的时候,我们往往可以直观地感受到有些问题是比较难的,有些问题是比较简单的,但是我们并不能因为没有设计出一个比较高效的算法,就说它是一个难问题,所以问题的难易是相对的,我们需要一个科学的手段来界定问题的难易

我们可以用问题之间的归约,来界定两个问题之间相对难易程度的基本手段

 

二、优化问题与判定问题

很多经典的难问题都是优化问题,而一个优化问题往往可以转换成对应的判定问题。

一般而言,优化问题是关注某种特殊的结构,并希望优化该结构的某种指标

最大团问题就是典型的优化问题、

 

一个优化问题往往可以定义其对应的判定问题。判定问题关注同样的结构、同样的指标,但是不同于优化问题的是,它不在关注指标的最大、最小值,而是引进一个参数k,并问一个“是与否”的问题

研究判定问题的意义是什么呢:

1、能为研究问题的复杂性发挥什么作用?

2、判定问题比优化问题更简单,那么研究判定问题能否全面反映该问题的复杂性

 

三、归约的定义

问题P可归约到问题Q:问题P可以间接地通过解决问题Q来实现

 

 

 

四、多项式时间

我们将多项式时间可解的问题称作P问题

对问题这样分类的意义?

 

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
要证明多项式时间归约的传递性,我们需要证明以下命题: 如果问题 A 可以被多项式时间归约到问题 B,问题 B 可以被多项式时间归约到问题 C,那么问题 A 可以被多项式时间归约到问题 C。 假设问题 A 可以被多项式时间归约到问题 B,那么存在一个多项式时间计算的函数 f,使得对于任何问题 A 的实例 x,都有 f(x) 是问题 B 的一个实例,并且 A 的解等价于 B 的解。即,如果我们可以在多项式时间内解决 B,那么也可以在多项式时间内解决 A。 同理,如果问题 B 可以被多项式时间归约到问题 C,那么存在一个多项式时间计算的函数 g,使得对于任何问题 B 的实例 y,都有 g(y) 是问题 C 的一个实例,并且 B 的解等价于 C 的解。即,如果我们可以在多项式时间内解决 C,那么也可以在多项式时间内解决 B。 现在我们要证明的是,问题 A 可以被多项式时间归约到问题 C。为此,我们可以构造一个新的函数 h(x) = g(f(x)),它将 A 的实例 x 映射到 C 的实例 z,即 h(x) = z。 首先,我们需要证明 h(x) 是多项式时间计算的。因为 f 和 g 都是多项式时间计算的,所以 h(x) 也是多项式时间计算的。 其次,我们需要证明 A 的解等价于 C 的解。假设 A 的解为 x*,B 的解为 y*,C 的解为 z*。因为 A 可以被多项式时间归约到 B,所以我们可以在多项式时间内求出 y*,使得 f(x*) = y*。同理,因为 B 可以被多项式时间归约到 C,所以我们可以在多项式时间内求出 z*,使得 g(y*) = z*。综合可得,h(x*) = z*,即 A 的解等价于 C 的解。 因此,我们证明了多项式时间归约具有传递性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值