多项式规约

有多项式时间算法的问题和可能没有多项式时间算法的问题

有多项式时间算法 可能没有多项式时间算法
最短路问题 最长路问题
最小割问题 最大割问题
2元可满足性问题 3元可满足性问题
平面图4着色问题 平面图3着色问题
二部图顶点覆盖问题 一般图顶点覆盖问题
匹配问题 3D匹配问题
素性测试问题 质因子分解问题
线性规划问题 整数线性规划问题

多项式规约
问题 X X X能多项式规约到问题 Y Y Y:
对于任意一个问题 X X X的实例,进行多项式时间的标准计算步骤,加上多项式时间对 Y Y Y问题求解方法的调用,最终能求解出问题 X X X,则问题 X X X能多项式规约到问题 Y Y Y
Note:
问题 Y Y Y比问题 X X X要更难,或者难的核心在 Y Y Y上。
可以空跑问题 Y Y Y算法,只是单纯的多项式时间的标准计算步骤

如果问题 X X X和问题 Y Y Y能够相互多项式时间规约,即 X ≤ p Y X\leq_p Y XpY Y ≤ p X Y\leq_p X YpX,那么我们用 X ≡ p Y X\equiv_p Y XpY,表示问题 X X X和问题 Y Y Y能够相互多项式时间规约。

由于自规约性,我们以下讨论的都是该问题的判定性问题(决策问题)

① 独立集问题 ≡ p \equiv_p p 顶点覆盖问题
即若 S S S是一个大小为 k k k的独立集当且仅当 V − S V-S VS是一个大小为 n − k n-k nk的顶点覆盖

独立集问题
问题描述:给定一个图 G = ( V , E ) G=(V,E) G=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值