多项式规约

有多项式时间算法的问题和可能没有多项式时间算法的问题

有多项式时间算法 可能没有多项式时间算法
最短路问题 最长路问题
最小割问题 最大割问题
2元可满足性问题 3元可满足性问题
平面图4着色问题 平面图3着色问题
二部图顶点覆盖问题 一般图顶点覆盖问题
匹配问题 3D匹配问题
素性测试问题 质因子分解问题
线性规划问题 整数线性规划问题

多项式规约
问题 X X X能多项式规约到问题 Y Y Y:
对于任意一个问题 X X X的实例,进行多项式时间的标准计算步骤,加上多项式时间对 Y Y Y问题求解方法的调用,最终能求解出问题 X X X,则问题 X X X能多项式规约到问题 Y Y Y
Note:
问题 Y Y Y比问题 X X X要更难,或者难的核心在 Y Y Y上。
可以空跑问题 Y Y Y算法,只是单纯的多项式时间的标准计算步骤

如果问题 X X X和问题 Y Y Y能够相互多项式时间规约,即 X ≤ p Y X\leq_p Y XpY Y ≤ p X Y\leq_p X YpX,那么我们用 X ≡ p Y X\equiv_p Y XpY,表示问题 X X X和问题 Y Y Y能够相互多项式时间规约。

由于自规约性,我们以下讨论的都是该问题的判定性问题(决策问题)

① 独立集问题 ≡ p \equiv_p p 顶点覆盖问题
即若 S S S是一个大小为 k k k的独立集当且仅当 V − S V-S VS是一个大小为 n − k n-k nk的顶点覆盖

独立集问题
问题描述:给定一个图 G = ( V , E ) G=(V,E) G=

首先,哈密顿回路问题是指在一个无向图中是否存在一个简单回路,使得该回路经过图中的每个点恰好一次。而哈密顿问题则是指在一个有向图中是否存在一个简单路径,使得该路径经过图中的每个点恰好一次。 我们需要证明的是,无向图的哈密顿回路问题可以在多项式时间内规约到有向图的哈密顿问题。也就是说,我们可以将任意一个无向图的哈密顿回路问题转化为一个有向图的哈密顿问题,并且这个转化过程可以在多项式时间内完成。 具体的转化方法如下: 1. 对于给定的无向图G=(V, E),构造一个有向图G'=(V', E'),其中V' = V,E' 包含两部分边: - 对于无向图G中的每条边(u, v),在G'中添加两条有向边(u, v)和(v, u)。 - 对于无向图G中的每个节点v,在G'中添加一个与v相同的节点v',并且对于每个与v相邻的节点u,在G'中添加一条有向边(v, u')和一条有向边(u', v)。 2. 现在我们需要证明,如果无向图G存在哈密顿回路,则有向图G'存在哈密顿路径;反之亦然。 - 如果无向图G存在哈密顿回路,那么这个回路必然经过每个节点。在有向图G'中,我们可以通过沿着每个节点的对应节点v',然后依次沿着它们对应的边(u', v)和(v, u)走过每个节点,从而构造出一条哈密顿路径。 - 反之,如果有向图G'存在哈密顿路径,那么这个路径必然经过每个节点的对应节点v'。如果这个路径依次经过了每个节点的对应节点v',然后依次沿着它们对应的边(u', v)和(v, u)走过每个节点,那么我们就得到了一个简单回路,它经过了图G中的每个节点,因此G存在哈密顿回路。 由此可见,无向图的哈密顿回路问题可以在多项式时间内规约到有向图的哈密顿问题,证毕。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值