【算法笔记】莫队算法入门

前言

本来想学完回滚莫队、树上莫队、二离莫队之后一起写一个博客,但是一直学不会/kk,只好把已会的普通莫队和带修莫队写了(以后会补上的)

普通莫队

莫队算法的引入

莫队——优雅的暴力

例题

给定一个数列和若干询问,每次询问询问一段区间内不同种类数字的个数。

暴力做法

每次询问暴力枚举区间 [ l , r ] [l,r] [l,r],用一个数组 c n t cnt cnt记录每个数在区间内出现的次数,最后枚举 c n t cnt cnt数组,记录所有不为空的数的个数。

时间复杂度大概是 O ( q ( n 2 + m ) ) O(q(n^2+m)) O(q(n2+m)),其中 m m m为数据范围,一定会TLE的。

改进做法1(依然暴力)

考虑到优化,在记录每次枚举区间的时候,记录下不同数的个数,就剩下了最后枚举数据范围的步骤,时间复杂度变成 O ( n 2 q ) O(n^2q) O(n2q)

但是依然会TLE

改进做法2(离线力)

考虑离线,把所有操作都读入。

从第一个查询操作开始,每次以 O ( 1 ) O(1) O(1)的时间复杂度拓展。

如第一个查询操作为 [ l , r ] [l,r] [l,r],第二个操作查询 [ l − 3 , r + 4 ] [l-3,r+4] [l3,r+4],那我们就一步一步地把 l l l,向左移动,每次移动的时候把拓展的数字加入cnt,更新答案, r r r同理。

形象的理解就是维护两个指针 l , r l,r l,r,每次 l , r l,r l,r左右移动的同时更新答案。

但是这种做法本质上还是 O ( n 2 q ) O(n^2q) O(n2q)的(常数会小很多),所以我们需要继续优化。

改进做法3(排序大法好)

上一个做法的低效之处在于,如果第一个操作数列后面,第二个操作在最前面, l l l指针就会从末尾一路走到最前面(漂洋过海来看你?),如果出题人这样构造数据的话,复杂度就和最开始的暴力没有区别了。

考虑到排序,按照 l l l排序,让 r r r乱蹦跶,两个指针有序地向后窜,时间复杂度就会变成 O ( q n log ⁡ n ) O(qn \log n) O(qnlogn)

依然会TLE

改进做法4(莫队算法!!!)

通过逐步的优化,我们已经摸索出了真正的莫队算法!!!

莫队算法其实就是通过某种神奇优化,把复杂度降低(莫队orz),这种排序方法就很神奇(我也不会证)

考虑分块,把数列分成 n \sqrt{n} n 块。

优化上一个做法,排序时,第一个关键字为左端点所在块编号,第二个关键字是右端点编号。

这种排序方式会把算法优化到 O ( n n ) O(n\sqrt{n}) O(nn )(没法再优化了!!!)

具体证明我也不会,可以看link

那么代码我们也能写出来了。

代码

const int N=1e6+10;
int cnt[N],a[N],ans=0;
struct node{
	int l,r,id,ans;
}que[N];
int T;
int Ans[N];
bool cmp(node a,node b){
	if(a.l/T==b.l/T) return a.r<b.r;//第二个关键字按照右端点编号排序
	return a.l/T<b.l/T;//第一个关键字按照左端点所在块编号排序
}
void add(int x){
	//拓展一个数
	if(!cnt[x]) ans++;//若这个数还没有过,更新答案
	cnt[x]++;
}
void del(int x){
	cnt[x]--;
	if(!cnt[x]) ans--;
}
int n,m;
int main(){
	cin>>n;
	T=sqrt(n);//分块
	for(int i=1;i<=n;i++) cin>>a[i];
	cin>>m;
	for(int i=1;i<=m;i++) cin>>que[i].l>>que[i].r,que[i].id=i;
	sort(que+1,que+1+m,cmp);//排序
	int l=1,r=0;//最开始的lr指针应该是个空区间
	for(int i=1;i<=m;i++){
		//分别拓展
		while(r<que[i].r) add(a[++r]);
		while(r>que[i].r) del(a[r--]);
		while(l>que[i].l) add(a[--l]);
		while(l<que[i].l) del(a[l++]);
		Ans[que[i].id]=ans;//记录答案
	}
	for(int i=1;i<=m;i++) cout<<Ans[i]<<endl;
}

这个代码其实就是洛谷P1972 HH的项链,但由于某洛谷知名管理员加强了数据,这题莫队就过不去了(亲测莫队能卡到48,听说有人卡到了92)。

奇偶性优化

如果 l l l在奇数块,就按照 r r r顺序排序,否则按照 r r r逆序排序。

inline bool cmp(Que a,Que b){
	if(a.l/T!=b.l/T) return a.l/T<b.l/T;
	if((a.l/T)&1) return a.r<b.r;
	return a.r>b.r;
}

这个优化很有用,但是一般只会在卡常的时候用到。

例题1:小B的询问

原题

解题思路

在HH的项链被卡了后,这题就算是莫队模板了。

思路:用一个 c n t cnt cnt数组维护区间内数字个数,然后加减时答案增删平方,剩下就是普通莫队了。

AC代码

#include <bits/stdc++.h>
using namespace std;
const int N=5e4+10;
int cnt[N],a[N],ans=0;
struct Que{
	int l,r,id;//查询结构题
}que[N];
int T,Ans[N];
bool cmp(Que a,Que b){
	if(a.l/T!=b.l/T) return a.l/T<b.l/T;//第一个关键字为左端点所在块编号
	return a.r<b.r;//第二个关键字为右端点编号
}
void add(int x){
	ans-=cnt[x]*cnt[x];
	cnt[x]++;
	ans+=cnt[x]*cnt[x];
}
void del(int x){
	ans-=cnt[x]*cnt[x];
	cnt[x]--;
	ans+=cnt[x]*cnt[x];
}
int n,m,k;
int main(){
	cin>>n>>m>>k;
	T=sqrt(n);
	for(int i=1;i<=n;i++) cin>>a[i];
	for(int i=1;i<=m;i++) cin>>que[i].l>>que[i].r,que[i].id=i;//离线读入询问
	sort(que+1,que+1+m,cmp);//先排序
	int l=1,r=0;//起始lr指针设为一个空区间
	for(int i=1;i<=m;i++){
		//莫队算法
		while(r<que[i].r) add(a[++r]);
		while(r>que[i].r) del(a[r--]);
		while(l>que[i].l) add(a[--l]);
		while(l<que[i].l) del(a[l++]);
		Ans[que[i].id]=ans;//记录答案
	}
	for(int i=1;i<=m;i++) cout<<Ans[i]<<endl;
}

带修莫队

带修改的莫队就是在莫队的基础上多了一个修改操作(废话)

如果说普通的莫队是从 [ l 1 , r 1 ] [l_1,r_1] [l1,r1]转移到 [ l 2 , r 2 ] [l_2,r_2] [l2,r2],那带修改的莫队就是从 [ l 1 , r 1 , t 1 ] [l_1,r_1,t_1] [l1,r1,t1]转移到 [ l 2 , r 2 , t 2 ] [l_2,r_2,t_2] [l2,r2,t2]

所以我们可以把修改操作也存下来,执行莫队算法的时候,先按照普通莫队的做法转移到下一个区间,然后再进行(或撤销)这两次查询之间进行的修改,就相当于转移到了目标的询问。

可以把带修莫队理解成一个多了时间的坐标轴,如图

带修莫队
至于实现,则比较简单,排序时以左端点所在块编号为第一个关键字,右端点所在块编号为第二个关键字,第三个关键字是时间戳(在这次查询前右多少次修改)。

普通莫队维护两个指针 l , r l,r l,r,带修莫队多维护一个指针 t t t即可。

另外分块时不能以 n \sqrt{n} n 分了,带修莫队一般一块 n 2 3 n^{\frac{2}{3}} n32,分成 n 1 3 n^{\frac{1}{3}} n31块,复杂度为 O ( n 3 5 ) O(n^{\frac{3}{5}}) O(n53)(不会证明,可以看oiwiki

例题2:数颜色

原题

带修莫队模板题。

AC代码

#include <bits/stdc++.h>
using namespace std;
const int N=1e6+10;
int T;
struct Que{
	int l,r,id,tim;
}que[N];
int as[N];
bool cmp(Que a,Que b){
	if(a.l/T==b.l/T){
		if(a.r/T==b.r/T) return a.tim<b.tim;
		return a.r/T<b.r/T;
	}
	return a.l/T<b.l/T;
}
struct Upd{
	int p,col;
}upd[N];
int cnt[N],ans=0,a[N];
void add(int x){
	if(!cnt[x]) ans++;
	cnt[x]++;
}
void del(int x){
	cnt[x]--;
	if(!cnt[x]) ans--;
}
int n,m,iq=0,ic=0;
int main(){
	cin>>n>>m;
	for(int i=1;i<=n;i++) cin>>a[i];
	for(int i=1;i<=m;i++){
		char opt;
		int l,r;
		cin>>opt>>l>>r;
		if(opt=='Q') que[++iq]={l,r,iq,ic};
		else upd[++ic]={l,r};
	}
	T=pow(n,0.666);//即n^2/3
	sort(que+1,que+1+iq,cmp);//排序
	int l=1,r=0,now=0;//三个指针
	for(int i=1;i<=m;i++){
		//这部分和普通莫队差不多
		while(l<que[i].l) del(a[l++]);
		while(l>que[i].l) add(a[--l]);
		while(r>que[i].r) del(a[r--]);
		while(r<que[i].r) add(a[++r]);
		//转移到新询问的时间戳
		while(now<que[i].tim){
			++now;
			int p=upd[now].p,c=upd[now].col;
			if(l<=p&&p<=r) del(a[p]),add(c);
			swap(a[p],upd[now].col);
		}
		while(now>que[i].tim){
			int p=upd[now].p,c=upd[now].col;
			if(l<=p&&p<=r)	del(a[p]),add(c);
			swap(a[p],upd[now].col);
			now--;
		}
		as[que[i].id]=ans;//记录答案
	}
	for(int i=1;i<=iq;i++) cout<<as[i]<<endl;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值