证明一下单位根

本文介绍了单位根的基本概念,包括它是n次方程的解以及在实数和复数域中的表示方法。重点讲解了如何通过欧拉公式找到单位根的表达式,并提到了单位根在数学中的实际应用,如解决圆的几何问题、抽象代数中的循环群和FFT中的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有些东西不记下来就忘了……

单位根是啥

x n − 1 = 0 x^n-1=0 xn1=0

事实上就是 x = 1 n x=\sqrt[n]{1} x=n1

其实它有 n n n个解(代数基本定理),我们管这 n n n个解叫 n n n次单位根

推导一下吧

很显然,在实数上我们只知道 ± 1 \pm 1 ±1这两个解,找那 n n n个解要去复数域上去找。

z n = 1 z^n=1 zn=1

用辐角表示法,设 z = r ( cos ⁡ θ + i sin ⁡ θ ) z=r(\cos \theta+i\sin\theta) z=r(cosθ+isinθ)

由棣莫弗公式,有 r n ( cos ⁡ n θ + i sin ⁡ n θ ) = 1 r^n(\cos n\theta+i\sin n\theta)=1 rn(cosnθ+isinnθ)=1

显然 ∣ z n ∣ = ∣ z ∣ n |z^n|=|z|^n zn=zn,所以 r n = 1 r^n=1 rn=1

所以可以表示为 z n = cos ⁡ n θ + i sin ⁡ n θ = 1 z^n=\cos n\theta+i\sin n\theta=1 zn=cosnθ+isinnθ=1

虚部与虚部对应,实部与实部对于,得到

{ cos ⁡ n θ = 1 i sin ⁡ n θ = 0 \left\{\begin{matrix} \cos n\theta =1 \\i\sin n\theta=0 \end{matrix}\right. {cosnθ=1isinnθ=0

所以 n θ = 0 , 2 π , 4 π , 6 π ⋯ n\theta=0,2\pi,4\pi,6\pi\cdots nθ=0,2π,4π,6π

观察发现 n θ = 2 k π n\theta=2k\pi nθ=2

θ = 2 k π n \theta=\frac{2k\pi}{n} θ=n2

所以这个复数可以表示为 z = cos ⁡ 2 k π n + i sin ⁡ 2 k π n z=\cos \frac{2k\pi}{n}+i\sin \frac{2k\pi}{n} z=cosn2+isinn2

用欧拉公式描述,就变成了
ω = e 2 k π n i \omega=e^{\frac{2k\pi}{n}i} ω=en2i

这也就是最常见的单位根表示的方法。

用啥用

在MO里,单位根可以来算一些关于圆的几何问题。

在抽象代数里,单位根可以表示一个循环群,比如12元的单位根的生成元有 φ ( 12 ) = 4 \varphi (12)=4 φ(12)=4

在FFT里,用到了单位根和原根的一些特性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值