有些东西不记下来就忘了……
单位根是啥
x n − 1 = 0 x^n-1=0 xn−1=0
事实上就是 x = 1 n x=\sqrt[n]{1} x=n1
其实它有 n n n个解(代数基本定理),我们管这 n n n个解叫 n n n次单位根
推导一下吧
很显然,在实数上我们只知道 ± 1 \pm 1 ±1这两个解,找那 n n n个解要去复数域上去找。
设 z n = 1 z^n=1 zn=1
用辐角表示法,设 z = r ( cos θ + i sin θ ) z=r(\cos \theta+i\sin\theta) z=r(cosθ+isinθ)
由棣莫弗公式,有 r n ( cos n θ + i sin n θ ) = 1 r^n(\cos n\theta+i\sin n\theta)=1 rn(cosnθ+isinnθ)=1
显然 ∣ z n ∣ = ∣ z ∣ n |z^n|=|z|^n ∣zn∣=∣z∣n,所以 r n = 1 r^n=1 rn=1
所以可以表示为 z n = cos n θ + i sin n θ = 1 z^n=\cos n\theta+i\sin n\theta=1 zn=cosnθ+isinnθ=1
虚部与虚部对应,实部与实部对于,得到
{ cos n θ = 1 i sin n θ = 0 \left\{\begin{matrix} \cos n\theta =1 \\i\sin n\theta=0 \end{matrix}\right. {cosnθ=1isinnθ=0
所以 n θ = 0 , 2 π , 4 π , 6 π ⋯ n\theta=0,2\pi,4\pi,6\pi\cdots nθ=0,2π,4π,6π⋯
观察发现 n θ = 2 k π n\theta=2k\pi nθ=2kπ
θ = 2 k π n \theta=\frac{2k\pi}{n} θ=n2kπ
所以这个复数可以表示为 z = cos 2 k π n + i sin 2 k π n z=\cos \frac{2k\pi}{n}+i\sin \frac{2k\pi}{n} z=cosn2kπ+isinn2kπ
用欧拉公式描述,就变成了
ω
=
e
2
k
π
n
i
\omega=e^{\frac{2k\pi}{n}i}
ω=en2kπi
这也就是最常见的单位根表示的方法。
用啥用
在MO里,单位根可以来算一些关于圆的几何问题。
在抽象代数里,单位根可以表示一个循环群,比如12元的单位根的生成元有 φ ( 12 ) = 4 \varphi (12)=4 φ(12)=4个
在FFT里,用到了单位根和原根的一些特性