【数学笔记】微分

前言

微分是一种很有用的工具,在初高中数学中有很多应用。

在阅读本篇文章前,你应该已经学会了导数和求导的法则(否则还学什么微分)。

什么是微分

很多人会把微分和导数混为一谈,事实上,它们是两种完全不一样的东西。

回顾导数

我们学习导数的时候,曾经学过导数的计算公式 f ′ ( x ) = f ( x + Δ x ) − f ( x ) Δ x f'(x)=\frac{f(x+\Delta x)-f(x)}{\Delta x} f(x)=Δxf(x+Δx)f(x)

这个公式的含义是什么呢?它代表了一个函数在 x x x取得一点点增量时,与 f ( x ) f(x) f(x)的增量的比值。

通俗地说,就是 x x x变化一点点, y y y自然也会变化一点点,此时 y y y的变化和 x x x的变化的比值就是导数。

如果写成一个简单的公式,就是 f ′ ( x ) = d y d x f'(x)=\frac{dy}{dx} f(x)=dxdy

微分?微商?

那么微分又是什么呢?

如果我们说导数是 d y d x \frac{dy}{dx} dxdy,那么微分就是 d y dy dy

形式化地,微分就是 x x x取得一点增量后, y y y取得增量(注意:这里没有比值了)

如果你足够聪明,你应该已经看出了导数和微分的关系,没错,微分 d y = f ′ ( x ) d x dy=f'(x)dx dy=f(x)dx

那么我们也就能够推出导数和微分之间的各种关系,比如

d y = f ′ ( x ) d x f ′ ( x ) = d y d x d x = d y f ′ ( x ) dy=f'(x)dx\\f'(x)=\frac{dy}{dx}\\dx=\frac{dy}{f'(x)} dy=f(x)dxf(x)=dxdydx=f(x)dy

可以看出,导数其实就是微分和 d x dx dx的比值,所以我们也管导数叫做“微商

微分的表示

微分的表示很弱智,就是在函数前面放个 d d d

f ( x ) f(x) f(x)的微分就是 d f ( x ) df(x) df(x) y y y的微分就是 d y dy dy

这个 d d d可以理解为一个运算符号,就像是在 f ( x ) f(x) f(x)上加一个 ′ ' 就代表 f ( x ) f(x) f(x)的导数 f ′ ( x ) f'(x) f(x),我们不需要特殊记忆。

没啥用的微分表

如何计算微分呢?

很多大学课本上都会给出一大堆函数的微分,在我看来,那根本没必要,通过 d y = f ′ ( x ) d x dy=f'(x)dx dy=f(x)dx这一个公式,就能知道所有函数的微分。

举个例子,求 f ( x ) = x 2 f(x)=x^2 f(x)=x2的微分。

我们知道, x 2 x^2 x2的导数是 2 x 2x 2x,所以 x 2 x^2 x2的微分就是 2 x d x 2xdx 2xdx

再放几个微分。

  1. f ( x ) = e x f(x)=e^x f(x)=ex
    f ′ ( x ) = e x f'(x)=e^x f(x)=ex
    d f ( x ) = e x d x df(x)=e^xdx df(x)=exdx
  2. f ( x ) = ln ⁡ x f(x)=\ln x f(x)=lnx
    f ′ ( x ) = 1 x f'(x)=\frac{1}{x} f(x)=x1
    d f ( x ) = d x x df(x)=\frac{dx}{x} df(x)=xdx
  3. f ( x ) = sin ⁡ x f(x)=\sin x f(x)=sinx
    f ′ ( x ) = cos ⁡ x f'(x)=\cos x f(x)=cosx
    d f ( x ) = cos ⁡ x d x df(x)=\cos xdx df(x)=cosxdx
    ……

微分有啥用

微分的应用有很多种,最主要的应用就是近似。

为什么微分能近似

我们回到导数的定义
f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x} f(x)=Δx0limΔxf(x+Δx)f(x)

注意, Δ x \Delta x Δx是趋近于0的,那么假如 Δ x \Delta x Δx是一个很小的量时,效果是什么样的呢?

可以证明,当 Δ x \Delta x Δx很小的时候(比如0.01),取得的结果和导数差不多,而且 Δ x \Delta x Δx越小,误差就越小。

这就是微分能够去近似的原因。

微分近似第一弹

我们设一个数 Δ x \Delta x Δx(注意这里我们把 Δ x \Delta x Δx看成是一个数,而不是无穷小)
那么由导数的定义,我们有
f ( x + Δ x ) − f ( x ) ∼ f ′ ( x ) Δ x f(x+\Delta x)-f(x)\sim f'(x)\Delta x f(x+Δx)f(x)f(x)Δx

那么这个公式有什么用呢?

如下面这道例题:

在半径为1cm的铁球表面镀上一层厚度为 0.01 0.01 0.01cm的铜,计算大约需要多少克的铜(铜的密度为 8.9 g / c m 3 8.9g/cm^3 8.9g/cm3

我们先写出暴力计算所需要的公式(如果真这么算计算量特别大)

m 铜 = ρ v = 8.9 ⋅ 3 4 π [ ( 1 + 0.01 ) 3 − 1 3 ] m_\text{铜}=\rho v=8.9\cdot\frac{3}{4}\pi [(1+0.01)^3-1^3] m=ρv=8.943π[(1+0.01)313]

我们发现,这里面的 ( 1 + 0.01 ) 3 − 1 3 (1+0.01)^3-1^3 (1+0.01)313很像前面的那个微分公式诶。

所以我们设 f ( x ) = x 3 f(x)=x^3 f(x)=x3,那么 ( 1 + 0.01 ) 3 − 1 3 (1+0.01)^3 -1^3 (1+0.01)313就可以写出 f ( 1 + 0.01 ) − f ( 1 ) f(1+0.01)-f(1) f(1+0.01)f(1)

通过刚才的那个微分公式,我们可以得到
f ( 1 + 0.01 ) − f ( 1 ) ∼ f ′ ( 1 ) ⋅ 0.01 f(1+0.01)-f(1)\sim f'(1)\cdot0.01 f(1+0.01)f(1)f(1)0.01

我们知道 f ′ ( x ) = 3 x 2 f'(x)=3x^2 f(x)=3x2,所以 f ( 1 + 0.01 ) − f ( 1 ) ≈ 3 ⋅ 1 2 ⋅ 0.01 = 0.03 f(1+0.01)-f(1)\approx 3\cdot1^2\cdot0.01=0.03 f(1+0.01)f(1)3120.01=0.03

m 铜 = 8.9 ⋅ 3 4 π ⋅ 0.03 ≈ 1.12 g m_\text{铜}=8.9\cdot\frac{3}{4}\pi\cdot0.03\approx1.12g m=8.943π0.031.12g

通过这道例题,我们发现,微分可以处理一些关于增量的近似问题,因此在物理中有很大的应用。

微分近似第二弹

f ( x 0 + Δ x ) ≈ f ( x 0 ) + f ′ ( x 0 ) Δ x f(x_0+\Delta x)\approx f(x_0)+f'(x_0)\Delta x f(x0+Δx)f(x0)+f(x0)Δx

这个公式有什么用呢?它可以计算在 x 0 x_0 x0点附近的函数值,举个例子。

sin ⁡ 4 6 ∘ \sin 46^{\circ} sin46

我们知道 sin ⁡ 4 5 ∘ = 2 2 \sin 45^\circ=\frac{\sqrt2}{2} sin45=22 ,但是 sin ⁡ 4 6 ∘ \sin 46^\circ sin46却很难计算,于是我们可以通过上面的微分公式。

因为 f ( x 0 + Δ x ) ≈ f ( x 0 ) + f ′ ( x 0 ) Δ x f(x_0+\Delta x)\approx f(x_0)+f'(x_0)\Delta x f(x0+Δx)f(x0)+f(x0)Δx

所以
sin ⁡ ( 4 5 ∘ + 1 ∘ ) ≈ sin ⁡ ( 4 5 ∘ ) + cos ⁡ ( 4 5 ∘ ) ⋅ 1 ∘ \sin(45^\circ+1^\circ)\approx \sin(45^\circ)+\cos(45^\circ)\cdot1^\circ sin(45+1)sin(45)+cos(45)1

用弧度制表示,就变成了
sin ⁡ 4 6 ∘ ≈ 2 2 + 2 2 ⋅ π 18 0 ∘ ≈ 0.719 \sin 46^\circ\approx \frac{\sqrt2}{2}+ \frac{\sqrt2}{2}\cdot\frac{\pi}{180^\circ}\approx0.719 sin4622 +22 180π0.719

微分还能求误差?

咕咕咕

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值