【数学笔记】微分中值定理

前言

今天学了微分中值定理,感觉很难,整理一下证明和例题,希望能掌握更牢固。

本文介绍Rolle,Lagrange,Cauchy三个定理,事实上,这三者的关系互相包含(前一项是后一项的特例),但又都很重要,在OI中可能会有一些应用(我也不知道有什么应用)

1. Rolle定理

Rolle定理是最基础的中值定理,比较直观,是最好理解的。

定义

设函数 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续,在开区间 ( a , b ) (a,b) (a,b)上可导,且 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b),则在 ( a , b ) (a,b) (a,b)上至少存在一点 x 0 x_0 x0,使

f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0

分析

这个定理很好理解,以运动为例,想想一个物体运动,从起始点出发,运动一会又回到了起始点,那么在这个过程中,这个物体肯定有一个时候速度是0。

如果画出s-t图像,那么速度就是斜率(也就是导数),我们会发现刚刚举的例子就是Rolle定理在 f ( a ) = f ( b ) = 0 f(a)=f(b)=0 f(a)=f(b)=0时的特例,而这个特例很容易推广到整体。

如图,这是一个二次函数的图像,当在函数顶点时, f ′ ( x ) = 0 f'(x)=0 f(x)=0

rolle定理1

证明

正经的证明不会,口胡一个。

我们有函数 f ( x ) f(x) f(x)满足在区间 [ a , b ] [a,b] [a,b]内连续可导,且 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)

f ( x ) f(x) f(x)分类讨论。

f ( x ) f(x) f(x)为常函数,则 f ( x ) f(x) f(x)为一条平行于 x x x轴的直线,斜率为0。

否则,

因为 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b),所以 f ( x ) f(x) f(x)不为一次函数。

因为 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]内连续,所以 f ( x ) f(x) f(x)必有拐点(峰值或谷值)。

在拐点处 f ( x 0 ) f(x_0) f(x0)的斜率为0。

故在 ( a , b ) (a,b) (a,b)上至少存在一点 x 0 x_0 x0,使 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0

注意事项

Rolle定理的三个条件(连续,可导, f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b))都要满足才能应用Rolle定理,否则很可能不成立。

如图,函数 f ( x ) = ∣ x ∣ f(x)=|x| f(x)=x ( 1 , − 1 ) (1,-1) (1,1)区间内,不满足连续性,所以在区间内没有一点的导数为0。

y=|x|

应用

如果 f ( x ) = 0 f(x)=0 f(x)=0,说明什么?

说明f(x)这个方程至少有一个实根。

如果我们遇到求一个方程在区间内有没有实根的题,就可以用Rolle定理。

解题思路

首先构造一个 F ( x ) F(x) F(x),让它的导函数为 f ( x ) f(x) f(x)(实际上就是求 f ( x ) f(x) f(x)的积分)

然后证明 F ( a ) = F ( b ) F(a)=F(b) F(a)=F(b)(ab是区间左右边界)

之后只需说明 F ( x ) F(x) F(x)在区间内是连续可导的,就可以应用Rolle定理,使区间内必有一个数 x 0 x_0 x0,使 F ′ ( x ) = 0 F'(x)=0 F(x)=0(即 f ( x ) = 0 f(x)=0 f(x)=0

例题

例题1
证明Rolle定理对函数 f ( x ) = x 2 − 2 x f(x)=x^2-2x f(x)=x22x在区间 [ 0 , 2 ] [0,2] [0,2]上的正确性。

证明:

因为 f ( x ) f(x) f(x)是多项式,所以 f ( x ) f(x) f(x)连续可导,且 f ( 0 ) = f ( 2 ) = 0 f(0)=f(2)=0 f(0)=f(2)=0

故满足Rolle定理的基本条件。

f ′ ( x ) = 2 x − 2 f'(x)=2x-2 f(x)=2x2

f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0,即 2 x 0 − 2 = 0 2x_0-2=0 2x02=0,得 x 0 = 1 x_0=1 x0=1

因为 1 ∈ [ 0 , 2 ] 1 \in[0,2] 1[0,2]

∴ ∃ x ∈ [ 0 , 2 ] \therefore \exists x \in [0,2] x[0,2]使得 f ′ ( x ) = 0 f'(x)=0 f(x)=0

例题2
证明方程 4 x 3 − 6 x 2 + 2 x 4x^3-6x^2+2x 4x36x2+2x在开区间 ( 0 , 1 ) (0,1) (0,1)内至少有一个实根。

证明:

F ( x ) = x 4 − 2 x 3 + x 2 F(x)=x^4-2x^3+x^2 F(x)=x42x3+x2

F ( x ) F(x) F(x) [ 1 , 0 ] [1,0] [1,0]上连续,在 ( 1 , 0 ) (1,0) (1,0)上可导。

此时 F ( 0 ) = 0 F(0)=0 F(0)=0 F ( 1 ) = 0 F(1)=0 F(1)=0

由Rolle定理,在 ( 0 , 1 ) (0,1) (0,1)上必存在 x 0 x_0 x0,使得 F ′ ( x 0 ) = 0 F'(x_0)=0 F(x0)=0

∃ x ∈ ( 0 , 1 ) \exists x \in (0,1) x(0,1),使得 4 x 3 − 6 x 2 + 2 x 4x^3-6x^2+2x 4x36x2+2x

4 x 3 − 6 x 2 + 2 x 4x^3-6x^2+2x 4x36x2+2x ( 0 , 1 ) (0,1) (0,1)内有实根

2. Lagrange中值定理

定义

∃ x 0 ∈ ( a , b ) \exists x_0 \in (a,b) x0(a,b),满足 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)上可导,有 f ′ ( x 0 ) = f ( b ) − f ( a ) b − a f'(x_0)=\frac{f(b)-f(a)}{b-a} f(x0)=baf(b)f(a)

证明

在这里插入图片描述

作直线 g ( x ) g(x) g(x) A , B A,B A,B

由点斜式方程得 g ( x ) = f ( a ) + f ( b ) − f ( a ) b − a ( x − a ) g(x)=f(a)+\frac{f(b)-f(a)}{b-a} (x-a) g(x)=f(a)+baf(b)f(a)(xa)

F ( x ) = g ( x ) − f ( x ) F(x)=g(x)-f(x) F(x)=g(x)f(x)

= f ( a ) + f ( b ) − f ( a ) b − a ( x − a ) − f ( x ) =f(a)+\frac{f(b)-f(a)}{b-a} (x-a)-f(x) =f(a)+baf(b)f(a)(xa)f(x)

F ( a ) = f ( a ) − f ( a ) + f ( b ) − f ( a ) b − a ( a − a ) = 0 F(a)=f(a)-f(a)+\frac{f(b)-f(a)}{b-a} (a-a)=0 F(a)=f(a)f(a)+baf(b)f(a)(aa)=0

F ( b ) = f ( a ) − f ( b ) + f ( b ) − f ( a ) b − a ( b − a ) = 0 F(b)=f(a)- f(b)+\frac{f(b)-f(a)}{b-a}(b-a)=0 F(b)=f(a)f(b)+baf(b)f(a)(ba)=0

F ( x ) F(x) F(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)上可导。

应用Rolle定理,

则在 ( a , b ) (a,b) (a,b)上必有一点 x 0 x_0 x0,使得 F ′ ( x ) = 0 F'(x)=0 F(x)=0

g ′ ( x ) − f ′ ( x ) = 0 g'(x)-f'(x)=0 g(x)f(x)=0,即 g ′ ( x ) = f ′ ( x ) g'(x)=f'(x) g(x)=f(x)

g ′ ( x ) = f ( b ) − f ( a ) b − a g'(x)=\frac{f(b)-f(a)}{b-a} g(x)=baf(b)f(a)

故得 f ′ ( x ) = f ( b ) − f ( a ) b − a f'(x)=\frac{f(b)-f(a)}{b-a} f(x)=baf(b)f(a)

证毕

分析

Lagrange中值定理实际上是Rolle定理的推论。

f ′ ( x 0 ) = f ( b ) − f ( a ) b − a f'(x_0)=\frac{f(b)-f(a)}{b-a} f(x0)=baf(b)f(a)

f ( b ) = f ( a ) f(b)=f(a) f(b)=f(a)时, f ( b ) − f ( a ) b − a \frac{f(b)-f(a)}{b-a} baf(b)f(a),即 f ′ ( x 0 ) = 0 f'(x_ 0)=0 f(x0)=0,即Rolle中值定理。

推论

推论1

f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)上连续可导,且 f ′ ( x ) ≡ 0 f'(x) \equiv 0 f(x)0,则 f ( x ) f(x) f(x)为常函数

其实就是常函数的导数是0,看起来是个常识,但也可以证明。

证明

x 1 , x 2 ∈ ( a , b ) x_1,x_2 \in(a,b) x1,x2(a,b)

由Lagrange中值定理,

∃ x 0 ∈ ( x 1 , x 2 ) \exists x_0 \in(x_1,x_2) x0(x1,x2),使得 f ′ ( x 0 ) = f ( b ) − f ( a ) b − a f'(x_0)=\frac{f(b)-f(a)}{b-a} f(x0)=baf(b)f(a)

f ′ ( x 0 ) ( b − a ) + f ( a ) − f ( b ) = 0 f'(x_0)(b-a)+f(a)-f(b)=0 f(x0)(ba)+f(a)f(b)=0

∵ f ′ ( x ) ≡ 0 ∵f'(x) \equiv0 f(x)0

f ( a ) − f ( b ) = 0 f(a)-f(b)=0 f(a)f(b)=0

f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)

即证 f ( x ) f(x) f(x)是常函数

推论2

如果 f ’ ( x ) = g ’ ( x ) f’(x)=g’(x) f(x)=g(x),那么存在常数 C C C,使得 f ( x ) = g ( x ) + C f(x)=g(x)+C f(x)=g(x)+C成立

这个推论可以用上个推论来证

证明

F ′ ( x ) = g ′ ( x ) − f ′ ( x ) = 0 F'(x)=g'(x)-f'(x)=0 F(x)=g(x)f(x)=0

由推论1, F ( x ) = C F(x)= C F(x)=C

g ( x ) − f ( x ) = C g(x)-f(x)=C g(x)f(x)=C

f ( x ) = g ( x ) + C f(x)=g(x)+C f(x)=g(x)+C

3. Cauchy中值定理

定义

有函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) ( a , b ) (a,b) (a,b)连续可导

f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( x 0 ) g ( x 0 ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(x_0)}{g(x_0)} g(b)g(a)f(b)f(a)=g(x0)f(x0)

证明

不会证

分析

事实上,Cauchy中值定理是Lagrange中值定理的推广形式。

g ( x ) = x g(x)=x g(x)=x,则原式可化为 f ′ ( x 0 ) = f ( b ) − f ( a ) b − a f'(x_0)=\frac{f(b)-f(a)}{b-a} f(x0)=baf(b)f(a),即Lagrange中值定理

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值