在github上创建代码仓库时忘记添加.gitignore文件或修改了.gitignore该怎么办?

一、前言

.gitignore文件用于在提交项目文件时过滤一些不需要的文件。比如你的项目文件夹中包含若干.o和.cpp的文件,但是我只想提交.cpp的文件,这个时候.gitignore文件就作用非凡了。

注:在github创建代码仓库时要养成一个好习惯,一定记得要添加.gitignore文件,自己的项目是用什么语言写的就选择相应的.gitignore文件,如下图所示,小编选择的是C++。


如果不小心忘记创建.gitignore文件,而此时项目的代码已经提交到github上,其中包含了一些不想提交的内容,下面小编将介绍一种可行的解决方法。

二、解决办法

1.在项目根目录中创建.gitignore文件,在文件中添加不想版本控制的文件,假设你的项目文件夹名为mysite,mysite文件夹里有一个bin文件夹。

#这句的意思是忽略bin文件夹中所有带有.d后缀名的文件。
bin/*.d
#忽略mysite项目中所有带.o后缀名的文件。
*.o     

2.在.gitignore文件中“#”后面的语句会被忽略(相当于注释)。在.gitignore文件中一行只能出现一个语句(注释语句如果和过滤规则写在同一行,则会过滤规则会失效)。有关.gitignore文件的使用方法请参考:.gitignore文件的使用方法
3.提交.gitignore文件并使其中的规则生效:
有时候在 .gitignore 文件中添加规则并未生效,原因是 .gitignore 只能忽略原来没有被 track 的文件,如果某些文件已经加入了版本管理中,修改 .gitignore 是无效的。解决方法:先把不想记录文件的本地缓存删除,再在 .gitignore 中添加忽略该文件,然后再提交。

#清除本地缓存(改变成未track状态)
#git rm -r --cached . 表示清除项目中所有文件的本地缓存
git rm -r --cached xxx    #xxx表示不想版本控制的文件,比如小编可以输入test.o
                        #.gitignore中的忽略规则应该与之相对应
git add .   #添加除了忽略文件外的所有文件
git commit -m "此处可以描述你提交的信息"
git push -f #强制推送

注意:
1.在这里强调一下,如果本地版本与github上的远程仓库未建立联系,可以参考命令行:git push -f -u origin master
2.git add xxx (xxx表示文件名)这个命令行是将本地项目添加到暂存区(可以通过git rm -r –cached xxx 清空该文件的本地缓存),如果添加之后用git commit -m “描诉” 这条命令行提交了文件之后,即使用git rm -r –cached 文件名 清空了本地缓存之后再push上去仍然会在github上显示提交的文件。
3.如果git add xxx之后git rm -r –cached xxx,然后再git commit -m “描述”,则提交内容为空。

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值