题意
- 给你一个 n \rm n n个点的树A,一个 m \rm m m个点的树B,求A树有多少个不同的生成子图与B同构。( n ≤ 2000 , m ≤ 12 \rm n \le 2000,m\le12 n≤2000,m≤12)
我们首先可以枚举B树是哪个点作为根,B树同构的情况只能算一次,有一个DP就是设 f ( i , j ) f(i,j) f(i,j)表示A树上点 i i i与B树上点 j j j匹配的方案数。我们每次遍历A树的时候多记一个 g ( i , S ) g(i,S) g(i,S)表示当前点的前 j j j个儿子把 S S S集合的点一一对应的方案数,这个东西做一个背包就可以了。
B树自身子树同构的情况可能会导致一个点被重复匹配,那么对于B中所有深度的子树,假设某个深度有 x x x棵同构,那么对与当前点作为根的答案除 x ! x! x!即可。
#include<bits/stdc++.h>
#define pb push_back
#define Set(a, b) memset(a, b, sizeof(a))
#define For(i, a, b) for (int i = a; i <= b; ++ i)
using namespace std;
using ull = unsigned long long;
const int M = 12;
const int N = 2e3;
const int Base = 233;
const int mod = 1e9 + 7;
unordered_set<ull> vis;
vector<int> Ga[N + 5];
vector<int> Gb[M + 5];
int n, m, rt, coef, ans;
int g[N + 5][(1 << M) + 5];
int f[N + 5][M + 5], fa[N + 5];
int qpow(int _, int __) {
int ___ = 1;
for (; __; __ >>= 1, _ = 1ll * _ * _ % mod)
if (__ & 1) ___ = 1ll * ___ * _ % mod;
return ___;
}
ull dfs(int u, int dad) {
vector<ull> S;
ull res = Base;
for (auto v : Gb[u]) if (v ^ dad)
fa[v] = u, S.pb(dfs(v, u));
sort(S.begin(), S.end());
int sz = S.size(), len = 0;
For(i, 0, sz - 1) {
if (i && S[i] == S[i - 1]) ++ len;
else len = 1;
res += S[i];
coef = 1ll * qpow(len, mod - 2) * coef % mod;
}
return res * res;
}
void DFS(int u, int dad) {
for (auto v : Ga[u]) if (v ^ dad) DFS(v, u);
For(j, 1, m) {
int tp[M + 5], cnt = 0, id = 0, all;
for (auto v : Gb[j]) if (v ^ fa[j]) tp[++ cnt] = v;
all = 1 << cnt, g[0][0] = 1;
for (auto v : Ga[u]) {
++ id;
For(S, 0, all - 1) g[id][S] = g[id - 1][S];
For(S, 0, all - 1) For(k, 1, cnt) if (S >> (k - 1) & 1)
(g[id][S] += 1ll * f[v][tp[k]] * g[id - 1][S ^ 1 << (k - 1)] % mod) %= mod;
}
(f[u][j] += g[id][all - 1]) %= mod;
For(k, 0, id) For(S, 0, all - 1) g[k][S] = 0;
}
}
int main() {
freopen("tree.in", "r", stdin);
freopen("tree.out", "w", stdout);
int x, y;
scanf("%d", &n);
For(i, 2, n) {
scanf("%d%d", &x, &y);
Ga[x].pb(y), Ga[y].pb(x);
}
scanf("%d", &m);
For(i, 2, m) {
scanf("%d%d", &x, &y);
Gb[x].pb(y), Gb[y].pb(x);
}
For(i, 1, m) {
fa[rt = i] = 0, coef = 1;
ull hs = dfs(rt, 0);
if (vis.count(hs)) continue;
vis.insert(hs), DFS(1, 0);
For(j, 1, n) (ans += 1ll * coef * f[j][i] % mod) %= mod;
Set(f, 0);
}
cout << ans << endl;
return 0;
}
// hash B
// 枚举B中每个点为根 贴到A树上
// f[i][j] A中的i与B中的j 对应的方案数
// 自身儿子同构的话除阶乘。
// g[i][S] 只用前i个点把S中的点对应完的方案数