第十周学习笔记

第十周学习笔记

1.阅读《模式识别》(第三版)张学工

第二章 统计决策方法

主要内容
  • 最小错误率贝叶斯决策
  • 最小风险贝叶斯决策
  • 两类错误率、Neyman-Pearson决策与ROC曲线
  • 正态分布时的统计决策
  • 错误率的计算
  • 离散概率模型下的统计决策举例(马尔可夫模型,隐马尔科夫模型)
值得注意的地方
1.为什么最小错误率贝叶斯决策是使后验概率最大的决策?

最小错误率贝叶斯决策是为了最小化
min ⁡ P ( e ) = ∫ p ( e ∣ x ) p ( x ) d x \min P(e)=\int p(e|x)p(x)dx minP(e)=p(ex)p(x)dx

对于某个x,有
p ( e ∣ x ) = { P ( w 2 ∣ x ) 如果决策x ∈ w 1 P ( w 1 ∣ x ) 如果决策x ∈ w 2 p(e|x)= \begin{cases} P(w_2|x)& \text{如果决策x}\in w_1\\ P(w_1|x)& \text{如果决策x}\in w_2 \end{cases} p(ex)={P(w2x)P(w1x)如果决策xw1如果决策xw2

其中 p ( x ) p(x) p(x)可依据全概率公式展开,
直观的理解就是,如果认为 x x x属于第一类,那么犯错误的概率就是 x x x属于第二类的概率,如果认为 x x x属于第二类,那么犯错误的概率就是 x x x属于第一类的概率。
所以

最小化积分式
最小化p(e|x)
p(x)是固定的
选择更小的p(w|x)
选择更大的后验概率
2.计算后验概率的时候可以不用计算分母

后验概率的计算法则为

p ( w i ∣ x ) = p ( x ∣ w i ) p ( w i ) p ( x ) p(w_i|x)=\dfrac{p(x|w_i)p(w_i)}{p(x)} p(wix)=p(x)p(xwi)p(wi)

其中 p ( x ) p(x) p(x)可以依据全概率公式展开,由公式可知,右边的分母是不依赖于 i i i的因此,计算x属于各个类别的后验概率时 p ( x ) p(x) p(x)是相等的,因而,可以只计算分母进行比较即可,事实上 p ( x ) p(x) p(x)只是一个归一因子。

3.灵敏度、特异度、准确率、召回率

灵敏度、特异度、准确率、召回率的计算公式分别为

S n (灵敏度) = T P T P + F N Sn \text{(灵敏度)}= \dfrac{TP}{TP+FN} Sn(灵敏度)=TP+FNTP

S p (特异度) = T N T N + F P Sp \text{(特异度)} = \dfrac{TN}{TN+FP} Sp(特异度)=TN+FPTN

P (准确率) = T P T P + F P P \text{(准确率)} = \dfrac{TP}{TP+FP} P(准确率)=TP+FPTP

R (召回率) = T P T P + F N R \text{(召回率)} = \dfrac{TP}{TP+FN} R(召回率)=TP+FNTP

观察公式可知,灵敏度就是召回率,也就是正类样本中被识别成正类的比例,医学角度说就是在所有生病的人中被判断为生病的人数,特异度是负类样本中被识别为负类的比例,而准确率就是判断为正类的样本中,真实为正类的样本所占比例,注意此处的准确率和召回率都是针对正类样本所言,换一个角度,特异度其实也是负类样本的召回率

4.不相关性与独立性

不相关性
E [ X 1 X 2 ] = E [ X 1 ] E [ X 2 ] E[X_1X_2]=E[X_1]E[X_2] E[X1X2]=E[X1]E[X2]
也可以是
C o v ( X 1 , X 2 ) = 0 Cov(X_1,X_2)=0 Cov(X1,X2)=0
独立性
p ( X 1 X 2 ) = p ( X 1 ) p ( X 2 ) p(X_1X_2)=p(X_1)p(X_2) p(X1X2)=p(X1)p(X2)

独立 ⇒ \Rightarrow 不相关

5.正态分布概率模型下的最小错误贝叶斯决策

当假设各类正态分布的协方差矩阵相等时,实际上就是CS229中的高斯判别分析

6.基于概率模型的模式识别方法与基于数据模式的识别方法

基于概率模型的模式识别方法使用概率模型对各类样本进行建模,进而比较似然比进行决策,而基于数据模式的识别方法直接估计计算数据到模式的映射,分别对应了生成学习方法和判别学习方法。

第三章 概率密度函数估计

主要内容
  • 最大似然函数估计
  • 贝叶斯估计与贝叶斯学习
  • 概率密度估计的的非参数方法
值得注意的地方
1.P48习题:为什么 Σ ^ = 1 N ( x i − μ ^ ) ( x i − μ ^ ) T \hat{\Sigma}=\dfrac{1}{N}(x_i-\hat{\mu})(x_i-\hat{\mu})^T Σ^=N1(xiμ^)(xiμ^)T不是无偏估计?

E [ Σ ^ ] = 1 N E [ ∑ i = 1 N ( x i − μ ^ ) ( x i − μ ^ ) T ] = 1 N E [ ∑ i = 1 N ( x i x i T − μ ^ x i T − x i μ ^ T + μ ^ μ ^ T ) ] = 1 N E [ ∑ i = 1 N ( x i x i T − μ ^ μ ^ T ) ] = E [ x 1 x 1 T − μ ^ μ ^ T ] = E [ x 1 x 1 T ] − E [ μ ^ μ ^ T ] = D [ x 1 ] + E [ x 1 ] E [ x 1 ] T − ( D [ μ ^ ] + E [ μ ^ ] E [ μ ^ ] T ) = Σ + μ μ T − 1 N Σ − μ μ T = N − 1 N Σ \begin{aligned} E[\hat\Sigma]&=\dfrac{1}{N}E[\sum_{i=1}^{N}(x_i-\hat{\mu})(x_i-\hat{\mu})^T]\\ &=\dfrac{1}{N}E[\sum_{i=1}^{N}(x_ix_i^T-\hat\mu x_i^T-x_i\hat\mu^T+\hat\mu\hat\mu^T)]\\ &=\dfrac{1}{N}E[\sum_{i=1}^N(x_ix_i^T-\hat\mu\hat\mu^T)]\\ &=E[x_1x_1^T-\hat\mu\hat\mu^T]\\ &=E[x_1x_1^T]-E[\hat\mu\hat\mu^T]\\ &=D[x_1]+E[x_1]E[x_1]^T-(D[\hat\mu]+E[\hat\mu]E[\hat\mu]^T)\\ &=\Sigma+\mu\mu^T-\dfrac{1}{N}\Sigma-\mu\mu^T\\ &=\dfrac{N-1}{N}\Sigma \end{aligned} E[Σ^]=N1E[i=1N(xiμ^)(xiμ^)T]=N1E[i=1N(xixiTμ^xiTxiμ^T+μ^μ^T)]=N1E[i=1N(xixiTμ^μ^T)]=E[x1x1Tμ^μ^T]=E[x1x1T]E[μ^μ^T]=D[x1]+E[x1]E[x1]T(D[μ^]+E[μ^]E[μ^]T)=Σ+μμTN1ΣμμT=NN1Σ
同时可知 1 N − 1 E [ ∑ i = 1 N ( x i − μ ^ ) ( x i − μ ^ ) T ] \dfrac{1}{N-1}E[\sum_{i=1}^{N}(x_i-\hat{\mu})(x_i-\hat{\mu})^T] N11E[i=1N(xiμ^)(xiμ^)T] Σ \Sigma Σ的无偏估计

第四章 线性分类器

主要内容
  • 线性判别函数的基本概念
  • Fisher线性判别分析
值得注意的地方
1.P65公式推导

∂ J F ( w ) ∂ w = 2 S b w w T S w w − 2 w T S b w S w ( w T S w w ) 2 = 2 ( m 1 − m 2 ) ( m 1 − m 2 ) T w w T S w w − 2 w T ( m 1 − m 2 ) ( m 1 − m 2 ) T w S w w ( w T S w w ) 2 = 2 w T ( m 1 − m 2 ) ( m 1 − m 2 ) w T S w w − 2 w T ( m 1 − m 2 ) w T ( m 1 − m 2 ) S w w ( w T S w w ) 2 = 2 w T ( m 1 − m 2 ) w T S w w [ ( m 1 − m 2 ) + w T ( m 1 − m 2 ) S w w w T S w w ] \begin{aligned} \dfrac{\partial{J_F(w)}}{\partial{w}}&=\dfrac{2S_bw}{w^TS_ww}-\dfrac{2w^TS_bwSw}{(w^TS_ww)^2}\\ &=\dfrac{2(m_1-m_2)(m_1-m_2)^Tw}{w^TS_ww}-\dfrac{2w^T(m_1-m_2)(m_1-m_2)^TwS_ww}{(w^TS_ww)^2}\\ &=\dfrac{2w^T(m_1-m_2)(m_1-m_2)}{w^TS_ww}-\dfrac{2w^T(m_1-m_2)w^T(m_1-m_2)S_ww}{(w^TS_ww)^2}\\ &=\dfrac{2w^T(m_1-m_2)}{w^TS_ww}\left[(m_1-m_2)+\dfrac{w^T(m_1-m_2)S_ww}{w^TS_ww} \right] \end{aligned} wJF(w)=wTSww2Sbw(wTSww)22wTSbwSw=wTSww2(m1m2)(m1m2)Tw(wTSww)22wT(m1m2)(m1m2)TwSww=wTSww2wT(m1m2)(m1m2)(wTSww)22wT(m1m2)wT(m1m2)Sww=wTSww2wT(m1m2)[(m1m2)+wTSwwwT(m1m2)Sww]
令其等于0,得

w ⋆ ∝ S w − 1 ( m 1 − m 2 ) w^{\star} \propto S_w^{-1}(m_1-m_2) wSw1(m1m2)

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值