
自动驾驶
luoganttcc
微信:luogantt2
展开
-
开源的自动驾驶模拟器
以下是目前主流的 。原创 2025-04-22 11:05:00 · 917 阅读 · 0 评论 -
NeRF的自动标注系统
NeRF(Neural Radiance Fields,神经辐射场)的自动标注系统是近年来自动驾驶领域的一项突破性技术,它通过深度学习从多视角图像中重建高精度3D场景,大幅降低了人工标注的成本,同时提升了数据标注的效率和精度。原创 2025-04-22 09:03:54 · 734 阅读 · 0 评论 -
自动驾驶最新算法进展
自动驾驶技术的算法进展迅速,涵盖感知、预测、规划、端到端学习等多个领域。原创 2025-04-21 20:31:43 · 1420 阅读 · 0 评论 -
介绍一下 nuScenes 数据集
nuScenes 数据集是自动驾驶领域的重要开源资源,旨在推动多模态感知与复杂场景下的算法研究。原创 2025-04-20 17:24:24 · 357 阅读 · 0 评论 -
libmkl_intel_thread.so.2: undefined symbol: __kmpc_global_thread_num 错误解决
【代码】libmkl_intel_thread.so.2: undefined symbol: __kmpc_global_thread_num 错误解决。原创 2025-04-20 13:14:40 · 90 阅读 · 0 评论 -
mmdetection3d 推理 centerpoint
【代码】mmdetection3d 推理 centerpoint。原创 2025-04-20 12:32:31 · 99 阅读 · 0 评论 -
深度补全网络:CSPN++ 有哪些开源项目
关于 CSPN++(Convolutional Spatial Propagation Network++) 的开源项目,目前官方或社区维护的完整实现较为有限,但以下资源可作为研究深度补全任务的参考:原创 2025-04-19 20:14:37 · 595 阅读 · 0 评论 -
基于 • 在4D标注项目下,对原始点云进行信息扩充和持续优化,包括但不限于RGB 信息和 语义信息。 • 在4D标注项目下,对自建图结果进行道路结构的模型预刷,包括但不限于 车道线,路沿,路标,交通牌
二、道路结构预标注系统。三、视觉大模型集成方案。原创 2025-04-19 18:33:03 · 314 阅读 · 0 评论 -
深度补全网络:如CSPN++填补稀疏点云的深度信息
自适应地学习空间传播的亲和力更高效地实现深度补全能够处理不同稀疏模式的输入。原创 2025-04-19 18:23:53 · 392 阅读 · 0 评论 -
CMFA在自动驾驶中的应用案例
CMFA(Cross-Modal Feature Alignment)方法在自动驾驶领域有多个成功的应用场景,以下是几个典型案例:应用场景:车辆、行人、骑行者等交通参与者的精确检测实现方式:优势:应用场景:可行驶区域、车道线、路缘等道路元素的精确分割实现方式:案例效果:应用场景:高精度车辆定位与环境建图实现方式:实际应用:应用场景:雾天、雨天、夜间等恶劣条件下的环境感知解决方案:实测数据:应用场景:自动化数据标注与合成数据生成实现方法:应用价值:原创 2025-04-19 18:22:43 · 572 阅读 · 0 评论 -
自动驾驶决策控制及运动规划史上最详细最接地气综述
link本人方向为自动驾驶决策控制与运动规划(Decision Making And Motion Planning, DMAP),前段时间终于发完了里程碑式的文章,到现在科研路也是逐渐步入下一阶段了,想着当初入门的时候那种困难且没有方向的感觉,而且网上实在缺少对这方面知识简单易懂且全面的梳理,我觉得可以把我所学分享出来,供大家参考借鉴。需要注意的是:这些东西你完全可以从网上或者文献中获得,从这篇blog中了解信息的优势仅仅是帮你省去大把大把大把自己找文献梳理脉络的时间(对症下药的那种,而不是漫无目的的随意原创 2023-03-15 18:18:57 · 1083 阅读 · 0 评论 -
Apollo CyberRT(v8.0.0) Cmake Build
根据自己的终端运行对应的脚本,不知道自己的terminal是bash还是zsh,运行。拆分,使用Cmake编译, 不依赖Apollo独立运行。原创 2023-03-15 15:19:06 · 762 阅读 · 1 评论 -
【解决方案】Apollo6.0EDU回放数据包时提示cyber_recorder: command not found
文章知识点与官方知识档案匹配,可进一步学习相关知识。转载 2022-09-28 17:31:39 · 294 阅读 · 0 评论 -
Top 8 Autonomous Driving Open Source Projects One Must Try Hands-On
The past few years have seen active development in autonomous driving by organisations and academia. One of the standard practices in autonomous driving is developing and validating prototypes of driving in simulators. The researchers worldwide have been d原创 2022-08-25 15:02:30 · 469 阅读 · 0 评论 -
apollo install ERROR: An error occurred during the fetch of repository ‘zlib‘:
line 31-38。原创 2022-08-25 15:01:23 · 376 阅读 · 0 评论 -
apollo install Server terminated abruptly (error code: 14, error message: ‘Socket closed‘,
【代码】apollo install Server terminated abruptly (error code: 14, error message: ‘Socket closed‘,原创 2022-08-25 15:00:38 · 840 阅读 · 1 评论 -
汽车CAN总线
linkCAN(Controller Area Network)总线协议是由 BOSCH 发明的一种基于消息广播模式的串行通信总线,它起初用于实现汽车内ECU之间可靠的通信,后因其简单实用可靠等特点,而广泛应用于工业自动化、船舶、医疗等其它领域。相比于其它网络类型,如局域网(LAN, Local Area Network)、广域网(WAN, Wide Area Network)和个人网(PAN, Personal Area Network)等,CAN 更加适合应用于现场控制领域,因此得名。CAN总线是一种多原创 2022-07-12 16:53:45 · 3588 阅读 · 0 评论 -
为自动驾驶保驾护航—谈谈主流中间件设计
link随着自动驾驶等级从L2向L2++甚至L3/L4过渡,对于数据传输要求越来越高。 随着国内外新势力车厂的快速崛起,汽车智能化水平不断提升。整车中央计算平台,自动驾驶域控制器持续走热。谈起自动驾驶,可能更多的人想到的是AI技术、如Mobileye视觉感知、地图、各类规划算法、控制、大数据。目前越来越多的主机厂聚焦于数据如何更高效和准确的通信,随着自动驾驶等级从L2向L2++甚至L3/L4过渡,对于数据传输要求越来越高。中间件开发和应用一下子被推到了风口浪尖。 谈到中间件,我们不得不先讲一下操作系统OS。原创 2022-07-08 10:23:00 · 712 阅读 · 0 评论 -
自动驾驶中间件之二:通信中间件,DDS与SOMEIP 谁主沉浮?
link随着传感器的数量越来越多,数据来源越来越多、规模也会越来越大,那这些多源异构数据如何在芯片之间、在各任务进程之间高效、稳定地传递,确保“在正确的时间,传递正确的数据,并确保数据抵达正确的地点”呢? 会有哪些信息在模块之间共享?如何将这些信息发送编码到消息中?如何将消息从一个模块传递到另一个模块?如何在接收到消息后解码?各个模块间的通信分别花了多长时间? 在OTA的时候,进程如何不被打断? 这些问题,都需要通过“通信中间件”来解决。在自动驾驶领域,中间件的功能涉及到通信、模块升级、任务调度、执行管理,原创 2022-07-08 10:23:12 · 2083 阅读 · 0 评论 -
自动驾驶平台Apollo 3.5阅读手记:Cyber RT中的协程(Coroutine)
2019 CES上百度发布了Apollo 3.5,其中的亮点之一就是其高性能计算框架Cyber RT。我们知道,Apollo在3.0及之前是基于ROS并作了一些改进。经过十多年的发展,ROS已建立起强大生态,在机器人社区广受欢迎,但其多用于学术界实验室验证机器人算法,并不是为了高可靠工业界产品设计的。虽然社区已经看到这一矛盾,并已开整ROS 2.0,但现在还处于开发阶段。自动驾驶相较于其它高性能系统而言,最重要的需求之一就是实时性。因为对于自动驾驶车来说,一旦车辆无法在指定时间内作出反应,可能车里的人就凉了原创 2022-07-08 10:23:25 · 1323 阅读 · 2 评论 -
为自动驾驶保驾护航—谈谈主流中间件设计
link随着国内外新势力车厂的快速崛起,汽车智能化水平不断提升。整车中央计算平台,自动驾驶域控制器持续走热。谈起自动驾驶,可能更多的人想到的是AI技术、如Mobileye视觉感知、地图、各类规划算法、控制、大数据。目前越来越多的主机厂聚焦于数据如何更高效和准确的通信,随着自动驾驶等级从L2向L2++甚至L3/L4过渡,对于数据传输要求越来越高。中间件开发和应用一下子被推到了风口浪尖。 谈到中间件,我们不得不先讲一下操作系统OS。操作系统有广义和狭义之分。狭义的操作系统大家都比较熟悉,手机设备上的ios、An原创 2022-07-08 10:23:39 · 858 阅读 · 0 评论 -
「冰羚」— 撑起自动驾驶未来的“中间件”
每当谈到自动驾驶的软件开发,人们首先想到的,是深不可测的人工智能算法,是各种感知融合,是各类路径规划...但是,就算是再智能再高深的算法,如果没有底层操作系统的支持,一切都将是纸上谈兵。而即便拥有了一套优秀的操作系统也还远远不够,我们还需要一条重要的“纽带”来承上启下,使上层应用与底层操作系统可以紧密的”连接“起来!而这条重要的“纽带”,就是我在本文中将为大家详细介绍的一种全新的,或许能够支撑起自动驾驶未来整体软件架构的“主心骨” - iceoryx「冰羚」。冰羚的组成如下:RouDi 的名称由来是’‘Ro原创 2022-07-07 17:31:58 · 2589 阅读 · 0 评论 -
自动驾驶资料集合
https://github.com/DeepTecher/awesome-autonomous-vehicle原创 2022-07-03 14:59:04 · 123 阅读 · 0 评论 -
“纯金”卫星,撞向我们的“蛋壳时代”
link“纯金”卫星,撞向我们的“蛋壳时代”文 | 史中对于尚未出世的小鸡来说,蛋壳就是它的一切。依靠这个“装甲护盾”,似乎每只小鸡都能天经地义地降生。然而,看上去坚硬完美的蛋壳,却充满看不见的孔洞。更高级的生灵,比如我们,可以用一万种方法击碎蛋壳,甚至在不触碰蛋壳的情况下,用气体、病菌、光线杀死其中的小鸡。令人伤感的真相是,我们世界的防护穹顶,和小鸡的蛋壳没有什么区别。唯一的不同在于,小鸡别无选择,而我们仍有选择。(一)“纯金”卫星2019年的此刻,我们的头顶上,漂浮着两万多颗人造卫星。这其中,有67颗原创 2022-03-31 20:18:07 · 534 阅读 · 0 评论 -
离职交接清单
cd /home/oem/lg/project/centerpoint_cpp/CenterPointTensorRT-master/src/buildcmake ..make ./centerpointcd /home/oem/lg/project/centerpoint_pro/python_center_point/CenterPoint1conda activate py36python demo1.py原创 2022-03-24 09:55:37 · 5587 阅读 · 0 评论 -
https://github.com/Abraham423/CenterPointTensorRT 的cmake
linkcmake_minimum_required(VERSION 2.8.3)project(centerpoint)set(USE_CUDA True)# For TensorRT sample lib# set(TRT_ROOT /home/wanghao/Desktop/projects/TensorRT)include_directories(../TensorRT-8/lib)include_directories(../TensorRT-8/include)includ原创 2022-03-12 10:23:54 · 575 阅读 · 0 评论 -
ORBSLAM3 单目摄像头运行
ORBSLAM3 单目摄像头运行原创 2022-03-08 20:41:32 · 1016 阅读 · 0 评论 -
orbslam 注释版本
代码在git原创 2022-03-02 15:45:18 · 278 阅读 · 0 评论 -
ONNX 实时graph优化方法
linkONNX 实时graph优化方法ONNX实时提供了各种图形优化来提高模型性能。图优化本质上是图级别的转换,从小型图简化和节点消除,到更复杂的节点融合和布局优化。图形优化根据其复杂性和功能分为几个类别(或级别)。可以在线或离线执行。在联机模式下,优化在执行推断之前完成,而在脱机模式下,实时将优化的图形保存到磁盘。ONNX实时提供Python、C++、C++和C API,启用不同的优化级别,并在脱机与在线模式之间进行选择。下面将详细介绍优化级别、在线/离线模式以及控制它们的各种API。图优化级原创 2022-02-24 10:05:28 · 1322 阅读 · 0 评论 -
吴建明博客
吴建明博客原创 2022-02-23 14:57:40 · 267 阅读 · 0 评论 -
特斯拉“纯视觉路线”能去掉ISP吗?
原文特斯拉“纯视觉路线”能去掉ISP吗?特斯拉“纯视觉路线”能去掉ISP吗?对特斯拉死磕的“纯视觉路线”,持质疑态度的。质疑的点在于:算法的进步,能弥补摄像头物理性能的局限性吗?比如,视觉算法足够牛逼时,摄像头就有测距能力了?晚上就能看见了?前一个疑问,在2021年7月份被打消——当时,特斯拉被曝已开发出“纯视觉测距”技术。而后一个疑问,则持续存在。如果把摄像头类比为人眼、把视觉算法类比为人的大脑中“跟眼睛配合的那一部分功能”,“视觉算法足够牛逼时,就可以不需要激光雷达”这种观点就相当于说“只要我的原创 2022-02-23 14:48:09 · 562 阅读 · 0 评论 -
Ubuntu16.04运行VoxelNetRos
link系统环境Ubuntu16.04ROS-KineticPython 3.5安装2.1 安装rviz插件因为程序中使用了(BoundingBox, BoundingBoxArray)这两个msgs,所以应使用以下命令安装rviz插件:sudo apt-get install ros-kinetic-jsk-rviz-plugins12.2 创建voxelnet虚拟环境conda create -n voxelnet python=3.5激活虚拟环境source activa原创 2022-02-18 16:18:56 · 290 阅读 · 0 评论 -
visual studio 2019配置OnnxRuntime+推理+vgg16
配置onnxruntime你可以下载vgg16模型加代码运行这个项目代码在gitvgg16模型链接链接: https://pan.baidu.com/s/19FE_eOgx8dbAwFitbzY1bg?pwd=6sub 提取码: 6sub 复制这段内容后也可以把代码+模型+依赖库全部下载,注意需要配置你的模型和相关文件路径+你的opencv依赖链接: https://pan.baidu.com/s/1RZSoeR5hYMNXspeJ6ywXiA?pwd=d6p5提取码: d6p5我建议你自己原创 2022-02-16 21:11:04 · 1250 阅读 · 0 评论 -
如何用visual studio 2019配置OnnxRuntime
onnxruntime 配置方式这里写自定义目录标题一、下载onnx库文件二、用visual studio 2019 解析nupkg包三、用vs2019中的cmake来配置ONNXRunTime一直以来都是用的linux系统,突然面对windows有点不知所措,这里记录一下,如何用vs2019配置OnnxRunTime一、下载onnx库文件这里有两种方案1、直接下载include和lib文件https://github.com/Microsoft/onnxruntime/releases/原创 2022-02-16 20:58:08 · 2113 阅读 · 0 评论 -
ubuntu安装pcl 教程
linksudo apt install libpcl-dev原创 2022-02-15 10:01:45 · 1838 阅读 · 0 评论 -
install onnx_tensort
install onnx_tensortTensorRT Backend For ONNXParses ONNX models for execution with TensorRT.See also the TensorRT documentation.For the list of recent changes, see the changelog.For a list of commonly seen issues and questions, see the FAQ.For busin原创 2022-02-10 16:51:57 · 2108 阅读 · 0 评论 -
C++使用onnxruntime/opencv对onnx模型进行推理(附代码)
1. c++使用onnxruntime进行推理linkcode in git#include <opencv2/core.hpp>#include <opencv2/imgcodecs.hpp>#include <opencv2/opencv.hpp>#include <opencv2/highgui.hpp>#include <opencv2/core/core.hpp>#include <opencv2/imgproc/i原创 2022-02-09 20:24:09 · 2103 阅读 · 3 评论 -
Pytorch网络模型转Onnx格式,多种方法(opencv、onnxruntime、c++)调用Onnx
Pytorch网络模型转Onnx格式,多种方法(opencv、onnxruntime、c++)调用Onnxlinkcode gitimport torchimport torchvisionimport cv2import onnximport numpy as npimport timmimport osfrom PIL import Imagefrom torchvision import transformsimport onnxruntimefrom onnxsim imp原创 2022-02-09 20:22:12 · 2485 阅读 · 0 评论 -
点云格式解读 PCD
linkPCD版本PCD格式有多个版本,如PCD_V5、PCD_V6等,分别表示PCD格式的0.5、0.6版本。PCL使用PCD_V7版本。PCD文件格式头PCD文件必须用ASCII字符编码。文件格式头(file format header)说明文件中存储的点云数据的格式。每个格式声明及点云数据之间用\n字符隔开。PCD_V7版本的格式头包含如下信息# .PCD v0.7 - Point Cloud Data file format VERSION 0.7 //PCD文件版本FIELDS x原创 2022-02-08 20:30:37 · 1477 阅读 · 0 评论 -
python读取 pcd 数据 三种方法
代码在gitimport open3d as o3dimport numpy as npdef read_pcd(file_path): pcd = o3d.io.read_point_cloud(file_path) # print(np.asarray(pcd.points)) colors = np.asarray(pcd.colors) * 255 points = np.asarray(pcd.points) # print(points.shape原创 2022-02-08 20:27:42 · 7066 阅读 · 3 评论