
神经网络
文章平均质量分 52
luoganttcc
微信:luogantt2
展开
-
Softmax 的上下溢出问题解决方案
Softmax 的上下溢出问题解决方案原创 2025-02-18 10:41:51 · 94 阅读 · 0 评论 -
c 语言实现卷积
【代码】c 语言实现卷积。原创 2025-02-17 18:06:12 · 92 阅读 · 0 评论 -
BP算法的推导 https://github.com/luogantt/BP-Algorithm
得到输出层的误差项之后,我们就可以根据上篇中介绍的"第k层神经元的误差项是由第k+1层的误差项乘以第k+1层的权重,再乘以第k层激活函数的导数得到"来计算其它层的误差项。实现了公式"z = weight * inputs + b",其中inputs是上一层网络的输出,weight是当前层的权重矩阵,b是当前层的偏置项,计算得到的z是当前层的输入。训练过程中的每一个回合,我们都用模型对验证集进行一次预测,并将预测的结果保存,用来绘制训练过程中模型在验证集上的准确率的变化过程。原创 2025-02-17 00:27:11 · 803 阅读 · 0 评论 -
AI SYSTEM
点这里 AISYSTEM## 二. AI 硬件体系结构:caption: === 二. AI 硬件体系结构 ===## 三. AI 编程与编译原理:caption: === 三. AI 编程与编译原理 ===## 四. 推理系统&引擎:caption: === 四. 推理系统&引擎 ===## 五. AI 框架核心模块:caption: === 五. AI 框架核心模块 ===## 附录内容:caption: === 附录内容 ===原创 2024-12-15 17:19:30 · 624 阅读 · 0 评论 -
人工智能系统
适用于[License](https://github.com/microsoft/AI-System/blob/main/LICENSE)版权许可。原创 2024-12-15 17:01:55 · 1240 阅读 · 0 评论 -
脉动阵列 一共多少时钟周期 2*n- 1
矩阵乘法 A* B。原创 2023-02-10 19:42:16 · 245 阅读 · 0 评论 -
神经网络的万能逼近定理
此博文中介绍的论文是 1990 年 Le Page 组织的一个会议的 Invited paper.把坐标轴在R^{n}中沿各个方向旋转 (如同CT原理),在每一射线上,构造Sigmoidal函数的线性组合,就可以逼近R^{n}中任何连续函数。通俗的讲,是实现神经网络逼近能力的技术。为了R^{n} 中函数达到精度1/N。万有逼近问题的最好的文章。在文章中,给出了最清晰,简洁的构造性证明。优点:用一个简单到不能再简单的函数的线性组合和叠合可以逼近任何连续函数。一维阶梯函数的线性组合能逼近任何连续一维连续函数。原创 2023-02-10 18:21:07 · 3815 阅读 · 1 评论 -
万能近似定理
Cybenko 等人于 1989 年证明了具有隐含层最少一层感知机神经网络在激励函数也称激活函数为 Sigmoid 函数的情况下具有逼近任何函数的作用。Hornik 等人在 1991 年进一步证明激励函数为任何非常数函数的情况同样适用。这就是著名的万能逼近定理。也就是一个仅有单隐含层的神经网络在神经元个数足够多的情况下通过非线性的激活函数足以拟合任意函数。转载 2023-02-10 17:47:13 · 3306 阅读 · 0 评论 -
No module named ‘pycuda.compyte‘
No module named ‘pycuda.compyte’原创 2022-12-30 11:01:00 · 214 阅读 · 0 评论 -
使用pytorch动手实现LSTM模块
import torchimport torch.nn as nnfrom torch.nn import Parameterfrom torch.nn import initfrom torch import Tensorimport mathclass NaiveLSTM(nn.Module): """Naive LSTM like nn.LSTM""" def ...原创 2022-02-24 10:09:44 · 822 阅读 · 1 评论 -
encoder decoder 模型理解
encoder decoder 模型是比较难理解的,理解这个模型需要清楚lstm 的整个源码细节,坦率的说这个模型我看了近十天,不敢说完全明白。我把细胞的有丝分裂的图片放在开头,我的直觉细胞的有丝分裂和这个模型有相通之处定义训练编码器####################################################################################################################################..原创 2020-05-14 16:13:00 · 2586 阅读 · 0 评论 -
EfficientNet算法笔记
原文转载 2020-05-08 20:25:58 · 304 阅读 · 0 评论 -
使用pytorch动手实现LSTM模块
原文import torchimport torch.nn as nnfrom torch.nn import Parameterfrom torch.nn import initfrom torch import Tensorimport mathclass NaiveLSTM(nn.Module): """Naive LSTM like nn.LSTM""" d...转载 2020-05-06 21:15:00 · 1236 阅读 · 0 评论 -
用 pytorch 实现 一个rnn
原文链接import torchtorch.__version__class RNN(object): def __init__(self,input_size,hidden_size): super().__init__() self.W_xh=torch.nn.Linear(input_size,hidden_size) #因为最后的操作是相加 ...转载 2020-05-06 21:08:32 · 498 阅读 · 0 评论 -
纯手撸一个rnn
原文import copy, numpy as npnp.random.seed(0)# sigmoid函数def sigmoid(x): output = 1 / (1 + np.exp(-x)) return output# sigmoid导数def sigmoid_output_to_derivative(output): return output...转载 2020-05-06 21:05:35 · 421 阅读 · 0 评论 -
20179.4,考虑置信区间数据清洗和结果均值检测
# -*- coding: utf-8 -*-"""Created on Fri Sep 1 19:07:23 2017@author: Administrator"""# -*- coding: utf-8 -*-"""Created on Thu Aug 24 15:14:07 2017@author: Administrator"""import pymongofrom pym原创 2017-09-01 19:11:55 · 777 阅读 · 0 评论 -
inceptionv4 keras 实现
链接原创 2019-07-15 22:48:55 · 2010 阅读 · 0 评论 -
densenet keras 实现
添加链接描述原创 2019-07-15 22:55:53 · 856 阅读 · 0 评论 -
resnet keras 实现
resnet原创 2019-07-15 23:11:57 · 661 阅读 · 0 评论 -
keras inceptionv1 到 inceptionv4演化
inceptionv1inceptionv2inceptionv4原创 2019-07-17 13:59:36 · 794 阅读 · 0 评论 -
lstm门控图
链接原创 2019-09-27 14:03:23 · 512 阅读 · 0 评论 -
rnn 数学推导
链接原创 2019-09-27 14:04:26 · 521 阅读 · 0 评论 -
keras 多输入模型
def build_model(product_shape, level_shape, attr_shape, period_shape): product_inputs = keras.Input(shape=(product_shape, )) level_inputs = keras.Input(shape=(level_shape, )) attr_inputs =...原创 2019-07-01 17:03:26 · 964 阅读 · 0 评论 -
lstm 理解
参考链接原创 2019-05-21 19:07:49 · 235 阅读 · 0 评论 -
循环神经网络的数据预处理
a=list(range(10))aOut[22]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]d = []k=3for i in range(len(a) - k+1): d.append(a[i: i + k ])dOut[24]: [[0, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4原创 2018-01-21 21:32:54 · 934 阅读 · 0 评论 -
RNN 神经网络数学推导
文章链接知乎转载 2017-11-26 21:52:30 · 1696 阅读 · 0 评论 -
RNN循环神经网络
LSTM转载 2017-09-11 10:27:06 · 436 阅读 · 1 评论 -
python 与机器学习实战(何宇健)代码下载
代码链接 知乎文章链接 博客链接转载 2017-09-05 10:35:08 · 6715 阅读 · 2 评论 -
kaggle 房价预测经典文章
1::: xgboost 2:::随机森林 3:::xgboost 线性模型 4:::xgboost数据预处理 数据预处理2 5:::文章集合 6:::岭回归 7:::xgboost资料1 xgboost资料2 8:::keras资料 如何提高深度学习原创 2017-08-25 16:49:12 · 5127 阅读 · 0 评论 -
lgfj
数据来源于公司的mongodb 数据库,由于公司保密需要,端口不能给出。大家看下吧。利用四个小区的历史交易训练模型,给出房价输出。# -*- coding: utf-8 -*-"""Created on Thu Aug 24 15:14:07 2017@author: Administrator"""import pymongofrom pymongo import MongoClient原创 2017-08-28 09:28:00 · 520 阅读 · 0 评论 -
AlphaGo灭了整个围棋界 下一步可能灭了散户跟交易员
来源:中国基金报 储泽 人工智能可以找出图片中的一只小猫,那他也能发现股票交易中的一些特点,然后用来赚钱。 新年伊始,一位“身份不明”的神秘棋手扫地僧“Master”在围棋界“ 疯狂杀戮 ”。 到了今天,已经60连胜。 没有身份、没有背景、没有历史、没有目的,不与人沟通只一次次刷新着记录,ID始终无人认领。这样神秘的出场方式与前所未见的诡异棋风,不单令围棋界震惊,也引发了网友的围观。无数人原创 2020-07-10 21:08:22 · 1264 阅读 · 0 评论 -
BP神经网络python代码详细解答(来自原文翻译)
翻译如下 **         在 SCRATCH采用python 上实现一种神经网络**         注: Scratch是一款由麻省理工学院(MIT) 设翻译 2020-07-31 20:53:52 · 25201 阅读 · 4 评论 -
神经网络激活函数链接
http://www.cnblogs.com/rgvb178/p/6055213.html转载 2017-02-22 16:52:16 · 603 阅读 · 0 评论 -
keras lstm
#!/usr/bin/env python3# -*- coding: utf-8 -*-"""Created on Sun Jan 21 19:42:56 2018@author: luogan"""import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.preproc原创 2018-01-21 22:56:06 · 473 阅读 · 2 评论 -
经典的cnn model
def get_model(X_input):#重新建立模型,与原来不一样的是这里inp是传入 n_classes = 5 # input_shape = (time_span, feature, 1)# X_input = Input(input_shape) #inp=Input(shape=(120,39))#原来的inp是函数里,传入可以三个公用#...原创 2019-04-09 13:57:43 · 1705 阅读 · 0 评论 -
anaconda 历史版本
anacondatensorflow原创 2019-04-10 10:31:58 · 1835 阅读 · 0 评论 -
yolo原理
yolo链接原创 2018-11-24 21:30:31 · 389 阅读 · 0 评论 -
常用深度学习模型
文章链接原创 2018-11-23 12:28:25 · 462 阅读 · 0 评论 -
视频分类
视频分类链接原文keras原创 2018-11-02 16:39:00 · 3877 阅读 · 0 评论 -
神经网络正则化
12原创 2018-10-05 14:25:05 · 307 阅读 · 0 评论