自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(182)
  • 资源 (26)
  • 收藏
  • 关注

原创 欢迎访问,博客导航

欢迎访问!下面向您介绍本博客的相关内容~博客相关资源博客所有的文章和代码都是开源的,你可以在我的github和gitee找到相关的代码和文档。GithubGitee当然你也可以访问我的个人博客,查询相关文章。我的博客主要涉及到的内容深度学习图像处理机器学习数据分析绘图可视化OpenCVPythonR主要专栏YUV图像处理OpenCV实战Seaborn...

2020-05-03 17:49:54 389

原创 [深度学习] 深度学习优化器选择学习笔记

本文主要展示各类深度学习优化器Optimizer的效果。所有结果基于pytorch实现,参考github项目pytorch-optimizer(仓库地址)的结果。pytorch-optimizer基于pytorch实现了常用的optimizer,非常推荐使用并加星该仓库。文章目录1 简介2 结果A2GradExp(2018)A2GradInc(2018)A2GradUni(2018)AccSGD(2019)AdaBelief(2020)AdaBound(2019)AdaMod(2019)Adafactor

2020-11-19 17:54:35 67

原创 [编程基础] Python命令行解析库argparse学习笔记

Python argparse教程展示了如何使用argparse模块解析Python中的命令行参数。文章目录1 使用说明1.1 Python argparse可选参数1.2 Python argparse必需参数1.3 Python argparse位置参数1.4 Python argparse dest1.5 Python argparse type1.6 Python argparse default1.7 Python argparse metavar1.8 Python argparse appe

2020-10-31 09:13:35 31

原创 [深度学习] imgaug库使用笔记

imgaug是一款非常有用的python图像增强库,非常值得推荐应用于深度学习图像增强。其包含许多增强技术,支持图像分类,目标检测,语义分割,热图、关键点检测等一系列任务的图像增强。本文主要介绍imgaug基本使用,以及应用关键点和边界框增强。官方代码仓库:imgaug官方入门文档:imgaug doc增强效果预览:overview of augmentersApi:imgaug dpi# 安装imgaug模块# pip install imgaug1 加载和增强图片1.1 读图i

2020-10-24 10:07:39 78

原创 [编程基础] Python中*args和**kwargs参数的使用

本文主要介绍Python中*args和**kwargs参数的使用文章目录1 使用2 拓展3 参考1 使用在Python中,定义函数时可以使用两个特殊符号,以允许它们接受可变数量的参数。这两个特殊符号为*和**。通常*和args一起使用,**和kwargs一起使用。事实上args和kwargs可以用任何名称替代,之所以用args和kwargs仅仅是为了遵从通俗约定。args为arguments的缩写,表示多个参数。kwargs为 keyword arguments 的缩写,表示多个关键字参数。Pyth

2020-10-14 21:04:20 96

原创 [OpenCV实战]48 基于OpenCV实现图像质量评价

本文主要介绍基于OpenCV contrib中的quality模块实现图像质量评价。图像质量评估Image Quality Analysis简称IQA,主要通过数学度量方法来评价图像质量的好坏。本文需要OpenCV contrib库,OpenCV contrib库的编译安装见:OpenCV_contrib库在windows下编译使用指南本文所有代码见:OpenCV-Practical-Exercise文章目录1 OpenCV中图像质量评价算法介绍1.1 相关背景1.2 OpenCV中图像质

2020-10-09 19:07:13 292

原创 [OpenCV实战]47 基于OpenCV实现视觉显著性检测

人类具有一种视觉注意机制,即当面对一个场景时,会选择性地忽略不感兴趣的区域,聚焦于感兴趣的区域。这些感兴趣的区域称为显著性区域。视觉显著性检测(Visual Saliency Detection,VSD)则是一种模拟人类视觉并从图像中提取显著性区域的智能算法。如下面左边的图所示,人眼在观看该图片时会首先注意其中的小狗,自动忽略背景区域,小狗所在区域就是显著性区域。通过计算机视觉算法对左边的图像进行视觉显著性检测能够得到下图右边的结果,其中黑色区域为不显著区域,白色为显著区域,显著性检测在机器人领域、目标检测

2020-09-15 19:54:28 542

原创 [OpenCV实战]46 在OpenCV下应用图像强度变换实现图像对比度均衡

本文主要介绍基于图像强度变换算法来实现图像对比度均衡。通过图像对比度均衡能够抑制图像中的无效信息,使图像转换为更符合计算机或人处理分析的形式,以提高图像的视觉价值和使用价值。本文主要介绍通过OpenCV contrib中的intensity_transform模块实现图像对比度均衡。如果想了解具体相关方法原理见冈萨雷斯主编的图像处理经典书籍 数字图像处理Digital Image Processing 第四版第三章。本文需要OpenCV contrib库,OpenCV contrib库的编译安装见:O

2020-09-10 19:42:47 344

原创 [R语言] 基于R语言实现树形图的绘制

树状图(或树形图)是一种网络结构。它由一个根节点组成,根节点产生由边或分支连接的多个节点。层次结构的最后一个节点称为叶。本文主要基于R语言实现树形图的绘制。关于python实现树形图的绘制见:基于matplotlib实现树形图的绘制之所以还用R语言实现树形图的绘制,主要原因在于R语言所实现的树形图比python实现的更加多样。R语言树形图提供以下两种类型:分层树形图:类似CEO管理团队领导管理员工等等。聚类树形图:聚类将一组个体按相似性分组。它的结果可以可视化为一棵树。本文主要参考:Dendro

2020-09-05 10:10:23 604

原创 [R语言] 基于R语言实现环状条形图的绘制

环状条形图(Circular barplot)是条形图的变体,图如其名,环状条形图在视觉上很吸引人,但也必须小心使用,因为环状条形图使用的是极坐标系而不是笛卡尔坐标系,每一个类别不共享相同的Y轴。环状条形图非常适合于周期性数据,本文主要介绍基于R语言实现环状条形图的绘制。本文主要参考链接:Circular barplotR语言的环状条形图主要基于tidyverse包实现,tidyverse是一组R包的集合,这些R包共享共同的原理并旨在无缝地协同工作,具体介绍见:tidyverse安装命令如下:in

2020-09-05 09:59:58 706

原创 [python] 基于matplotlib实现圆环图的绘制

圆环图本质上是一个中间切出一块区域的饼状图。可以使用python和matplotlib库来实现。本文主要介绍基于matplotlib实现圆环图。本文所有代码见:Python-Study-Notes# 去掉警告import warningswarnings.filterwarnings("ignore")# 多行输出from IPython.core.interactiveshell import InteractiveShellInteractiveShell.ast_node_interact

2020-09-01 19:05:16 652

原创 [python] 基于matplotlib实现雷达图的绘制

雷达图(也称为蜘蛛图或星形图)是一种可视化视图,用于使用一致的比例尺显示三个或更多维度上的多元数据。并非每个人都是雷达图的忠实拥护者,但我认为雷达图能够以视觉上吸引人的方式比较不同类别各个特征的值。本文主要讲述通过matplotlib绘制雷达图。本文所有代码见:Python-Study-Notes# 去掉警告import warningswarnings.filterwarnings("ignore")# 多行输出from IPython.core.interactiveshell import

2020-09-01 19:03:52 559

原创 [OpenCV实战]45 基于OpenCV实现图像哈希算法

目前有许多算法来衡量两幅图像的相似性,本文主要介绍在工程领域最常用的图像相似性算法评价算法:图像哈希算法(img hash)。图像哈希算法通过获取图像的哈希值并比较两幅图像的哈希值的汉明距离来衡量两幅图像是否相似。两幅图像越相似,其哈希值的汉明距离越小,通过这种方式就能够比较两幅图像是否相似。在实际应用中,图像哈希算法可以用于图片检索,重复图片剔除,以图搜图以及图片相似度比较。为什么图像哈希算法能够评估两幅图像的相似性,这就需要从哈希值说起,哈希值计算算法的本质就是对原始数据进行有损压缩,有损压缩后的固定

2020-08-27 19:32:15 401

原创 [OpenCV实战]44 使用OpenCV进行图像超分放大

图像超分辨率(Image Super Resolution)是指从低分辨率图像或图像序列得到高分辨率图像。图像超分辨率是计算机视觉领域中一个非常重要的研究问题,广泛应用于医学图像分析、生物识别、视频监控和安全等领域。随着深度学习技术的发展,基于深度学习的图像超分方法在多个测试任务上,相比传统图像超分方法,取得了更优的性能和效果。文章目录1 OpenCV dnn_superres模块介绍2 OpenCV dnn_superres模块使用2.1 图像超分放大单输出2.1.1 接口介绍2.1.2 示例代码2.1

2020-08-24 20:19:35 717

原创 [OpenCV实战]43 使用OpenCV进行背景分割

运动背景分割法Background Segment主要是指通过不同方法拟合模型建立背景图像,将当前帧与背景图像进行相减比较获得运动区域。下图所示为检测图像:通过前面的检测帧建立背景模型,获得背景图像。然后检测图像与背景图像相减即为运动图像,黑色区域为背景,白色区域为运动目标,如下图所示:在OpenCV标注库中有两种背景分割器:KNN,MOG2。但是实际上OpenCV_contrib库的bgsegm模块中还有其他几种背景分割器。本文主要介绍OpenCV_contrib中的运动背景分割模型及其用法,并对

2020-08-14 13:16:18 284

原创 [常用工具] OpenCV_contrib库在windows下编译使用指南

本文主要讲述opencv及opencv_contrib库在windows下基于vs2017编译安装指南。所用OpenCV版本为OpenCV4.4,编译平台为vs2017。文章目录1 下载2 编译与安装2.1 配置OpenCV标准库2.2 配置OpenCV_contrib库2.3 OpenCV需求配置2.3.1 配置优化编译选项2.3.2 去除不必要选项2.4 编译OpenCV2.5 其他平台与语言环境的OpenCV_contrib库使用3 配置与使用3.1 配置3.2 测试4 参考4.1 官方仓库4.2

2020-08-11 20:53:25 475

原创 [深度学习] ImageAI库使用笔记

ImageAI是一个Python库,旨在使开发人员,研究人员和学生能够使用简单的几行代码来构建具有独立的深度学习和计算机视觉功能的应用程序和系统。ImageAI的官方GitHub存储库为https://github.com/OlafenwaMoses/ImageAI文章目录0 安装1 图像预测1.1 参数说明1.2 样例代码2 目标检测2.1 参数说明2.2 样例代码3 视频实时检测与分析3.1 参数说明3.2 样例代码4 其他功能介绍5 参考# 去掉警告import warningswarni

2020-08-07 13:31:38 403

原创 [编程基础] Python对象的浅拷贝与深拷贝笔记

Python中的赋值语句不创建对象的副本,它们只将名称绑定到对象。对于不可变的对象,这通常没有什么区别。但是对于处理可变对象或可变对象的集合,您可能需要寻找一种方法来创建这些对象的“真实副本”或“克隆”。从本质上讲,您有时会希望拷贝可以在不自动修改原始副本的情况下进行修改。在本文中,我将向您简要介绍如何在Python3中复制或“克隆”对象,以及一些相关的注意事项。此外,在复制对象方面,Python 2和3之间没有什么区别。让我们先看看如何复制Python的内置集合。Python内置的可变集合,如列表、字典

2020-08-02 11:06:25 248

原创 [编程基础] Python中的绝对导入与相对导入

如果您从事的Python项目有多个文件,那么您以前可能不得不使用import语句。即使对于拥有多个项目的Python重度使用者(比如我),import也可能会造成混淆!您可能正在阅读本文,因为您想对Python中的import(尤其是绝对导入和相对导入)有更深入的了解。在本教程中,您将学习两者之间的区别以及它们的优缺点。让我们潜入吧!文章目录1 Imports快速介绍2 import语句的语法2.1 基本使用2.2 导入声明的样式3 绝对import和相对import3.1 绝对import3.2 相对

2020-08-01 22:08:54 227

原创 [编程基础] Python模块和包使用笔记

本文探讨Python模块和Python包,这两种机制有助于模块化编程。模块化编程是指将大型笨拙的编程任务分解为单独的,较小的,更易于管理的子任务或模块的过程。然后可以像构建模块一样将各个模块拼凑在一起以创建更大的应用程序。在大型应用程序中模块化代码有几个优点:简单性:模块通常只关注问题的一个相对较小的部分,而不是关注手头的整个问题。如果你是在一个模块上工作,你将有一个更小的问题域来解决。这使得开发更容易,也不容易出错。可维护性:模块通常经过设计,以便它们在不同问题域之间建立逻辑边界。如果以最小化相

2020-08-01 21:45:14 266

原创 [机器学习] Yellowbrick使用笔记8-模型选择可视化

Yellowbrick可视化工具旨在指导模型选择过程。一般来说,模型选择是一个搜索问题,定义如下:给定N个由数值属性描述的实例和(可选)一个估计目标,找到一个由特征、算法和最适合数据的超参数组成的三元组描述的模型。在大多数情况下,“最佳”三元组是指收到模型类型的最佳交叉验证分数的三元组。代码下载Yellowbrick.model_select包提供了可视化工具,用于检查交叉验证和超参数调优的性能。许多可视化工具包装sklearn.model_select和其他工具中的功能,用于执行多模型比较。当前实

2020-07-25 11:36:00 225

原创 [机器学习] Yellowbrick使用笔记7-聚类可视化

聚类模型是试图检测未标记数据中模式的无监督方法。聚类算法主要有两类:聚集聚类将相似的数据点连接在一起,而质心聚类则试图在数据中找到中心或分区。Yellowbrick提供yellowbrick.cluster用于可视化和评估群集行为的模块。目前,我们提供了几种可视化工具来评估质心机制,特别是K均值聚类,帮助我们发现聚类度量中的最佳K参数。代码下载主要方法如下:Elbow Method:根据某个评分函数对聚类进行可视化,在曲线中寻找“Elbow”。Silhouette Visualize:在一个模型中

2020-07-25 11:16:44 254

原创 [机器学习] Yellowbrick使用笔记6-分类可视化

分类模型试图在一个离散的空间中预测一个目标,即为一个因变量实例分配一个或多个类别。代码下载分类分数可视化工具显示类之间的差异以及一些特定于分类器的可视化评估。我们目前已经实施了以下分类器评估:分类报告Classification Report:视觉分类报告,将每个类别的精度,召回率和F1显示为热图。混淆矩阵Confusion Matrix:多类分类中混淆矩阵的热图视图。ROCAUC: 绘制训练器的工作特性和曲线下面积Precision-Recall曲线:绘制不同概率阈值的精度和召回率。类平衡

2020-07-25 11:04:08 322

原创 [机器学习] Yellowbrick使用笔记5-回归可视化

回归模型试图预测连续空间中的目标。回归计分可视化工具显示模型空间中的实例,以便更好地理解模型是如何进行预测的。我们目前已经实施了三种回归评估:残差图Residuals Plot:绘制期望值与实际值之间的差预测误差图Prediction Error Plot:在模型空间中绘制期望值与实际值alpha选择:视觉调整正则化超参数库克距离Cook’s Distance:描述了单个样本对整个回归模型的影响程度Estimator score Visualizer包装Scikit Learn estimat

2020-07-25 10:49:30 253

原创 [机器学习] Yellowbrick使用笔记4-目标可视化

目标可视化工具专门用于直观地描述用于监督建模的因变量,通常称为y目标。代码下载当前实现了以下可视化:平衡箱可视化Balanced Binning:生成带有垂直线的直方图,垂直线显示推荐值点,以将数据装箱到均匀分布的箱中。类平衡Class Balance:可视化来检查目标,以显示每个类对最终估计器的支持。特征相关Feature Correlation:绘制特征和因变量之间的相关性。文章目录1 平衡箱可视化Balanced Binning1.1 基本使用1.2 快速方法2 类平衡Class Ba

2020-07-25 10:31:35 257

原创 [机器学习] Yellowbrick使用笔记3-特征分析可视化

特征分析可视化工具设计用于在数据空间中可视化实例,以便检测可能影响下游拟合的特征或目标。因为ML操作高维数据集(通常至少35个),可视化工具将重点放在聚合、优化和其他技术上,以提供对数据的概述。这是Yellowbrick的意图,指导过程将允许数据科学家缩放和过滤,并探索他们的实例和维度之间的关系。代码下载目前,我们实现了以下功能分析可视化工具:特征排名Rank Features:对单个特征和成对特征进行排名以检测协方差RadViz Visualizer:沿围绕圆形排列的轴绘制数据点以检测可分离性平

2020-07-25 10:16:42 303

原创 [机器学习] Yellowbrick使用笔记2-模型选择

在本教程中,我们将查看各种Scikit Learn模型的分数,并使用Yellowbrick的可视化诊断工具对它们进行比较,以便为我们的数据选择最佳的模型。文章目录1 使用说明1.1 模型选择三原则1.2 关于数据1.3 特征提取1.4 建模与评估1.4.1 评估分类器的通用指标1.4.2 视觉模型评估2 参考1 使用说明1.1 模型选择三原则关于机器学习的讨论通常以单一的模型选择为特点。不管是logistic回归、随机森林、贝叶斯方法,还是人工神经网络,机器学习的实践者通常很快就能表达他们的偏好。原

2020-07-25 09:41:25 331

原创 [机器学习] Yellowbrick使用笔记1-快速入门

Yellowbrick是一个机器学习可视化库,主要依赖于sklearn机器学习库,能够提供多种机器学习算法的可视化,主要包括特征可视化,分类可视化,回归可视化,回归可视化,聚类可视化,模型选择可视化,目标可视化,文字可视化。本节主要介绍Yellowbrick如何快速使用。文章目录1 使用说明1.1 背景介绍1.2 Yellowbrick简单说明1.3 演练2 yellowbrick数据集3 参考1 使用说明1.1 背景介绍Yellowbrick有两个主要依赖项:scikit-learn和matplo

2020-07-25 09:06:26 299

原创 [机器学习] 特征选择笔记4-使用SelectFromModel特征选择
原力计划

特征选择代码下载本文主要介绍sklearn中进行特征选择的方法。sklearn.feature_selection模块中的类可用于样本集的特征选择/降维,以提高估计量的准确性得分或提高其在超高维数据集上的性能。文章目录1 SelectFromModel基础使用2 SelectFromModel中不同的特征选择方法2.1 基于L1范式进行特征选择2.2 基于树的特征选择3 参考SelectFromModel 是一个基础分类器,其根据重要性权重选择特征。可与拟合后具有coef_或feature_imp

2020-07-09 22:17:51 579

原创 [机器学习] 特征选择笔记3-递归式特征消除
原力计划

特征选择代码下载本文主要介绍sklearn中进行特征选择的方法。sklearn.feature_selection模块中的类可用于样本集的特征选择/降维,以提高估计量的准确性得分或提高其在超高维数据集上的性能。递归式特征消除Recursive feature elimination(RFE)给定一个为特征(如线性模型的系数)分配权重的外部估计量,递归特征消除(RFE)就是通过递归地考虑越来越小的特征集来选择特征。首先,对初始特征集训练估计器,通过coef_属性或feature_importance

2020-07-09 22:11:59 851

原创 [机器学习] 特征选择笔记2-单变量特征选择
原力计划

特征选择代码下载本文主要介绍sklearn中进行特征选择的方法。sklearn.feature_selection模块中的类可用于样本集的特征选择/降维,以提高估计量的准确性得分或提高其在超高维数据集上的性能。单变量特征选择是通过单变量统计检验来选择最好的特征。它可以看作是估计器的预处理步骤。Scikit-learn将特征选择相关功能作为接口进行公开:SelectKBest删除除最高评分外的所有功能SelectPercentile删除除用户指定的最高得分百分比以外的所有特征对每个特征使用通用

2020-07-09 22:07:08 370

原创 [机器学习] 特征选择笔记1-删除低方差的特征
原力计划

特征选择本文主要介绍sklearn中进行特征选择的方法。sklearn.feature_selection模块中的类可用于样本集的特征选择/降维,以提高估计量的准确性得分或提高其在超高维数据集上的性能。文章目录1 删除低方差的特征2 参考# 多行输出from IPython.core.interactiveshell import InteractiveShellInteractiveShell.ast_node_interactivity = "all" 1 删除低方差的特征代码下载

2020-07-09 21:46:03 705

原创 [编程基础] Python列表解析总结
原力计划

在本教程中,我们将学习使用Python列表解析(list comprehensions)相关知识文章目录1 使用介绍1.1 Python列表解析转换列表1.2 从摄氏度计算华氏温度1.3 Python列表解析过滤列表1.4 Python列表逻辑委托函数1.5 前置if条件判断1.6 Python列表解析处理多if条件1.7 Python列表解析处理多个for循环1.8 Python嵌套列表解析1.9 埃拉托色尼筛选法2 参考1 使用介绍列表解析是一种基于现有列表创建列表的句法结构。列表解析提供了创建列

2020-06-26 14:29:00 355

原创 [编程基础] Python装饰器入门总结
原力计划

Python装饰器教程展示了如何在Python中使用装饰器基本功能。文章目录1 使用教程1.1 Python装饰器简单示例1.2 带@符号的Python装饰器1.3 用参数修饰函数1.4 Python装饰器修改数据1.5 Python多层装饰器1.6 Python装饰器计时示例2 参考1 使用教程Python函数是一等公民。这意味着函数与Python中的其他对象具有同等的状态。可以将函数分配给变量,存储在集合中,动态创建和删除或作为参数传递。嵌套函数也称为内部函数,指的是在另一个函数中定义的函数。P

2020-06-25 17:12:53 251

原创 [编程基础] Python lambda函数总结
原力计划

Python lambda函数教程展示了如何在Python中创建匿名函数。Python中的匿名函数是使用lambda关键字创建的。文章目录1 介绍1.1 简单使用1.2 Python lambda与map1.3 Python lambda与filter1.4 Python lambda与sort2 参考1 介绍Python lambda函数也称为匿名函数,是没有名称的内联函数。它们是用lambda关键字创建的。这是内置Python的函数范型的一部分。Python lambda函数仅限于一个表达式。它

2020-06-25 09:56:15 6237 7

原创 [编程基础] Python随机数生成模块总结
原力计划

Python随机数生成模块教程演示如何在Python中生成伪随机数。文章目录1 介绍1.1 随机数字生成器1.2 Python random 模块1.3随机种子2 使用2.1 Python random模块同一随机种子使用2.2 Python random.randint2.3 Python random.randrange2.4 Python random.uniform2.5 Python random.choice2.6 Python random.shuffle2.7 Python random.

2020-06-24 21:05:32 468

原创 [编程基础] Python日志记录库logging总结
原力计划

Python日志记录教程展示了如何使用日志记录模块在Python中进行日志记录。文章目录1 介绍1.1 背景1.2 Python日志记录模块1.3 根记录器2 Python logging模块使用教程2.1 Python logging模块简单使用2.2 Python有效日志记录级别2.3 Python有效日志记录级别2.4 Python记录处理程序2.5 Python记录格式化程序2.6 Python日志基本配置2.7 Python日志记录文件配置2.8 Python日志记录变量2.9 Python日志

2020-06-23 23:02:04 303

原创 [编程基础] Python配置文件读取库ConfigParser总结
原力计划

Python ConfigParser教程显示了如何使用ConfigParser在Python中使用配置文件。文章目录1 介绍1.1 Python ConfigParser读取文件1.2 Python ConfigParser中的节1.3 Python ConfigParser从字符串中读取数据1.4 Python ConfigParser从字典中读取数据1.5 Python ConfigParser写入数据1.6 Python ConfigParserj解释数据2 参考1 介绍ConfigParse

2020-06-21 16:34:12 286

原创 [编程基础] Python数据生成库Faker总结
原力计划

Python Faker教程展示了如何使用Faker软件包在Python中生成伪数据。我们使用joke2k/faker包。文章目录1 介绍1.1 简单的使用1.2 Faking names1.3 Faking jobs1.4 Faking currencies1.5 Faking words1.6 Faking profiles1.7 Faking numbers1.8 Faking hashes and uuids1.9 Faking internet related data1.10 Faking d

2020-06-21 12:03:09 410

原创 [编程基础] Python谷歌翻译库googletrans总结

1 使用说明本文介绍python谷歌翻译库接口googletrans的使用。具体见官方文档:https://py-googletrans.readthedocs.io/en/latest/#googletrans.Translator.translate文章目录1 使用说明1.1 安装1.2 Python googletrans检测语言1.3 python googletrans简单翻译1.4 源语言和目标语言指定1.5 Python googletrans翻译列表2 参考1.1 安装安装谷歌py

2020-06-20 20:18:36 590

OfficeHome-RealWorld部分数据集|OfficeHome_RealWorld.rar

OfficeHome图像数据集RealWorld部分,无Art、Clipart、Product三部分

2020-11-24

OfficeHome-Art、Clipart、Product部分数据集|OfficeHome_Art_Clipart_Product.rar

OfficeHome图像数据集Art、Clipart、Product三部分,无realworld数据集部分

2020-11-24

caffe必备文件.zip|caffe必备文件.zip

我的caffe训练必备文件,来自https://blog.csdn.net/LuohenYJ/article/details/98873369

2019-08-10

Python编程快速上手附属材料.zip|Python编程快速上手附属材料.zip

个人整理《Python编程快速上手:让繁琐工作自动化》学习笔记所用到的表格音频文件。关于Python编程快速上手附属材料所有信息。使用见https://blog.csdn.net/LuohenYJ/article/details/93652495

2019-07-01

使用Hu矩进行形状匹配|HuMoments.zip

使用Hu矩进行形状匹配 https://blog.csdn.net/LuohenYJ/article/details/88603274

2019-03-16

使用OpenCV寻找平面图形的质心|centroid_blob.zip

使用OpenCV寻找平面图形的质心 https://blog.csdn.net/LuohenYJ/article/details/88599334

2019-03-16

yolov3_OpenImage图像训练教程|training_YOLOv3.zip

yolov3_OpenImage图像训练教程 https://blog.csdn.net/LuohenYJ/article/details/88581335

2019-03-16

yolov3 opencv教程|yolov3_detect.zip

yolov3 opencv教程,支持C++和python。 主要是读入图像进行目标识别 文章地址:https://blog.csdn.net/LuohenYJ/article/details/88581335

2019-03-13

基于特征点匹配的视频稳像|video_stabilization.zip

基于特征点匹配的视频稳像,opencv。有C++和python代码。 这个文件夹里面的代码有更新,详细见https://blog.csdn.net/luohenyj/article/details/88355444

2019-03-08

文本检测_opencv_DNN|text_detection.7z

基于深度学习的文本检测,不是文本识别! https://blog.csdn.net/LuohenYJ

2019-03-06

基于opencv实现透明斗篷|invisibility_cloak.7z

基于图像处理实现透明斗篷,方法很简单。代码更简单。python和C++代码都提供、使用说明https://blog.csdn.net/LuohenYJ/article/details/88134634

2019-03-06

人脸识别 – OpenCV, Dlib and Deep Learning|opencv_dlib_face_detection.7z

各种人脸检测方法,并对各种方法进行比较。下面是主要的人脸检测方法: 1 OpenCV中的Haar Cascade人脸分类器; 2 OpenCV中的深度学习人脸分类器; 3 Dlib中的hog人脸分类器; 4 Dlib中的深度学习人脸分类器。

2019-03-05

基于深度学习识别人脸性别和年龄|age_gender.7z

基于深度学习识别人脸性别和年龄!C++/python代码 https://blog.csdn.net/LuohenYJ/article/details/88134634

2019-03-04

yuv420p基本图像处理|yuv420p-image-processing.zip

目前数字图像处理技术已经应用生活各个方面,但是大部分教程都是利用第三方库(如opencv)对RGB图像格式进行处理。对于YUV图像格式的图像处理教程较少。搬运总结了多个大牛的文章,总结出来这个YUV图像像素处理教程。https://blog.csdn.net/luohenyj/category_9281576.html

2018-12-11

机器学习要领/Machine Learning Yearning

吴恩达, Andrew NG 的关于机器学习策略的工具书的原版

2018-08-21

cmake入门教程(linux)|cmake教程(linux).zip

cmake入门教程(linux),非常不错。不过是linux版本的,但是windows也可以使用。个人觉得可以看看

2018-08-04

深度学习与tensorflow

非常不错的tensorflow入门书籍,讲了深度学习的基础理论。适合新手

2018-04-18

大数据与机器学习

大数据,机器学习,深度学习。以深度学习(或者机器学习)建立于大数据之上的一些方法论

2018-04-15

TE田纳西-伊斯曼过程数据集|TE化工数据集.zip

TE过程控制数据集,其中22个训练集,22个测试集。每个训练集由52个测量信号组成。共480行。每个测试集由52个测量信号组成。共960行。https://blog.csdn.net/LuohenYJ/article/details/78441707

2017-11-03

热力工程计算图册

热力工程计算图册,适合进行热力计算,包含所有热力计算公式

2017-10-16

Qt及Qt Quick开发实战精解.

Qt及Qt Quick开发实战精解,适合入门,但是进一步学习还是需要练习

2017-10-16

电子学(第二版 吴利民译)

哈佛大学经典电子学教材,中文版。主要涉及电路基本原理及应用

2017-10-16

深度学习 方法及应用

用于了解各类深度神经网络的结构,及其主要应用。其中对于许多英文关键词都有对应的中文翻译

2017-10-15

一天搞懂深度学习.

一天搞懂深度学习,李宏毅版本。非常不错,但是只是大概了解,具体知识还是要好好学习

2017-10-15

一天搞懂深度学习

一天搞懂深度学习,非常非常适合入门。不过是英文的。

2017-10-15

零基础深度学习

零基础快速学习深度学习,中文版本的。虽然说零基础,但是还是要有点数学基础

2017-10-15

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除