2018-4-15摘录笔记,《网络表征学习前沿与实践》 崔鹏以及《网络表征学习中的基本问题初探》 王啸 崔鹏 朱文武

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/luolang_103/article/details/79946523

1.来源:《网络表征学习前沿与实践》  崔鹏

(1)随着数据的增加以及计算机计算速度的增加,想当然的以为速度快了,数据再多也是可以自己算的,但是若是数据之间存在着复杂的关系,那么处理一个样本就要同时的考虑它的关联的样本。数据之间的关联,这个是自己没想过的,自己只是粗陋的j觉的快了就可以处理,但是表示不出来复杂的关系,可能就会计算不出来结果

(2)今天的网络规模(如十亿级网络节点)已经导致任何相对复杂的分析算法都不可能在实际中大规模的应用。

(3)传统的网络的表征是以节点和边的表示的。边的表示的缺点:“边”的存在使得网络分析算法是迭代的或组合爆炸。其次“边”的存在使得网络节点之间进行相互耦合

(4)以社交网络为例,两个人形成一条边,往往是因为两人之间存在相似性。也就是存在一种“相近性”的隐含空间,产生了网络。

(5)如何将网络拓扑空间嵌入向量空间中,被称为“网络表征学习(network representation learning)”或“网络嵌入(network embedding)”

2.来源:《网络表征学习中的基本问题初探》 王啸  崔鹏  朱文武

传统的网络拓扑的缺点:

(1)由于拓扑结构通常导致许多网路的分析与处理算法需要很多迭代和组合计算步骤,因而不可避免的产生高复杂度运算的问题

(2)由于拓扑关系表示节点之间有着强的耦合关系似的并运和分布式很难被直接应用到网络数据

(3)目前的机器学习有了进一步的发展,但是他们针对的数据表征通常为一个向量空间中的独立性数据,而非彼此关联的非独立性网络数据,这会导致很多有效解决方案无法直接应用到网络数据上,而必须重新数据基于网络拓扑的模型


网络表征中的两个基本目标:

(1)在低维空间中学习到的表征可以重构出原有网络结构。就要求:如果两个节点有边连接,则他们在低维空间中 的矩离接近,否则他们的矩离就远

(2)学习到的表征可以有效地支持网络推断。

图嵌入:

(1)传统的图嵌入方法所针对的数据实际上是图像或文本等非结构化数据,所要达到的目的是学习图像或文本的表征,他们所采用的的图通过计算数据之间的相似度得到,而非是真实世界中的网络,这种相似度一旦通过计算得到,就认为表示了数据之间的准确关系。可真实世界中网络之间的边,通常只表示节点之间存在关系,节点之间的具体相似度需要根据具体的任务去计算


常用的网络表征学习模型:

(1)基于矩阵分解的模型

(2)基于随机游走的模型

(3)基于深度神经网络的模型

可以借鉴学习的:

网络表示学习(DeepWalk,LINE,node2vec,SDNE) - CSDN博客
https://blog.csdn.net/u013527419/article/details/76017528

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页