2018-4-15摘录笔记,《网络表征学习前沿与实践》 崔鹏以及《网络表征学习中的基本问题初探》 王啸 崔鹏 朱文武

22人阅读 评论(0) 收藏 举报

1.来源:《网络表征学习前沿与实践》  崔鹏

(1)随着数据的增加以及计算机计算速度的增加,想当然的以为速度快了,数据再多也是可以自己算的,但是若是数据之间存在着复杂的关系,那么处理一个样本就要同时的考虑它的关联的样本。数据之间的关联,这个是自己没想过的,自己只是粗陋的j觉的快了就可以处理,但是表示不出来复杂的关系,可能就会计算不出来结果

(2)今天的网络规模(如十亿级网络节点)已经导致任何相对复杂的分析算法都不可能在实际中大规模的应用。

(3)传统的网络的表征是以节点和边的表示的。边的表示的缺点:“边”的存在使得网络分析算法是迭代的或组合爆炸。其次“边”的存在使得网络节点之间进行相互耦合

(4)以社交网络为例,两个人形成一条边,往往是因为两人之间存在相似性。也就是存在一种“相近性”的隐含空间,产生了网络。

(5)如何将网络拓扑空间嵌入向量空间中,被称为“网络表征学习(network representation learning)”或“网络嵌入(network embedding)”

2.来源:《网络表征学习中的基本问题初探》 王啸  崔鹏  朱文武

传统的网络拓扑的缺点:

(1)由于拓扑结构通常导致许多网路的分析与处理算法需要很多迭代和组合计算步骤,因而不可避免的产生高复杂度运算的问题

(2)由于拓扑关系表示节点之间有着强的耦合关系似的并运和分布式很难被直接应用到网络数据

(3)目前的机器学习有了进一步的发展,但是他们针对的数据表征通常为一个向量空间中的独立性数据,而非彼此关联的非独立性网络数据,这会导致很多有效解决方案无法直接应用到网络数据上,而必须重新数据基于网络拓扑的模型


网络表征中的两个基本目标:

(1)在低维空间中学习到的表征可以重构出原有网络结构。就要求:如果两个节点有边连接,则他们在低维空间中 的矩离接近,否则他们的矩离就远

(2)学习到的表征可以有效地支持网络推断。

图嵌入:

(1)传统的图嵌入方法所针对的数据实际上是图像或文本等非结构化数据,所要达到的目的是学习图像或文本的表征,他们所采用的的图通过计算数据之间的相似度得到,而非是真实世界中的网络,这种相似度一旦通过计算得到,就认为表示了数据之间的准确关系。可真实世界中网络之间的边,通常只表示节点之间存在关系,节点之间的具体相似度需要根据具体的任务去计算


常用的网络表征学习模型:

(1)基于矩阵分解的模型

(2)基于随机游走的模型

(3)基于深度神经网络的模型

可以借鉴学习的:

网络表示学习(DeepWalk,LINE,node2vec,SDNE) - CSDN博客
https://blog.csdn.net/u013527419/article/details/76017528

查看评论

表征学习

Feature learning 在机器学习中,特征学习或表征学习[1]是学习一个特征的技术的集合:将原始数据转换成为能够被机器学习来有效开发的一种形式。它避免了手动提...
  • yunxinan
  • yunxinan
  • 2016-10-18 17:37:43
  • 2418

大规模知识图谱的表征学习

  • 2015年12月28日 14:59
  • 4.23MB
  • 下载

我们请来了2017 NIPS大会发文数全球前3的华人教授,讲解网络数据的表征学习(视频+PPT)

2017 NIPS大会可以算得上全球声量最大、出席人数最多的AI学术会议了。大会刚刚落下帷幕,不少媒体和社区都总结了本次会议相关数据,比如,大会发文数:图:最有声望、出席人数最多的AI学术会议-NIP...
  • dzJx2EOtaA24Adr
  • dzJx2EOtaA24Adr
  • 2017-12-23 00:00:00
  • 252

【深度学习理论】表征学习

\qquad在机器学习中,特征学习或者是表征学习是学习特征的技术的集合:将原始数据通过特诊提取并运行机器学习进行有效的开发。在学习使用特征的过程中,也获得了如何去提取特征的能力。 \qquad在监督...
  • TwT520Ly
  • TwT520Ly
  • 2018-03-09 11:12:02
  • 47

公开课 | 佐治亚理工大学宋乐教授:用Structure2Vec提取特征,解决网络数据的表征学习问题

大家好,文摘菌又来啦!
  • dzJx2EOtaA24Adr
  • dzJx2EOtaA24Adr
  • 2017-09-29 00:00:00
  • 2078

网络表征学习简介

    中国计算机学会通讯(CCF)3月份发布了一个关于网络表征学习的专题,对于想了解这方面知识的朋友来说真是雪中送炭啊,感谢大牛们的好文章,下面就来简单谈一谈关于“网络表征学习(Network Re...
  • swy520
  • swy520
  • 2018-04-17 19:26:45
  • 12

从全局最优性到学习表征不变性,一文揭秘深度学习成功的数学原因

近年来,深度学习大获成功,尤其是卷积神经网络(CNN)在图像识别任务上的突出表现。然而,由于黑箱的存在,这种成功一度让机器学习理论学家颇感不解。本文的目的正是要揭示深度学习成功的奥秘。通过围绕着深度学...
  • Uwr44UOuQcNsUQb60zk2
  • Uwr44UOuQcNsUQb60zk2
  • 2017-12-17 06:42:47
  • 313

MOOC人工智能原理学习笔记1

人工智能原理学习笔记1The Foundations of AI:Philosophy Mathematics Economics Neuroscience Psychology Compu...
  • c11556913
  • c11556913
  • 2017-11-26 22:54:21
  • 108

深度学习--基于深度矩阵分解的属性表征学习

基于深度矩阵分解的属性表征学习 原文地址:http://blog.csdn.NET/hjimce/article/details/50876956 作者:hjimce 一、相关概...
  • txwh0820
  • txwh0820
  • 2016-10-22 10:47:10
  • 880

同质网络表征学习简介

    上一篇博文中介绍了网络表征学习的相关概念,那么这篇文章就来介绍一下其中的同质网络表征学习吧。1.概念    根据包含的节点或边的类型是否相同,信息网络可划分为同质信息网络(简称为同质网络)和异...
  • swy520
  • swy520
  • 2018-04-18 17:58:57
  • 12
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 5885
    积分: 1142
    排名: 4万+
    博客专栏
    文章存档
    最新评论