中国计算机学会通讯(CCF)3月份发布了一个关于网络表征学习的专题,对于想了解这方面知识的朋友来说真是雪中送炭啊,感谢大牛们的好文章,下面就来简单谈一谈关于“网络表征学习(Network Representation Learning NRL)”的那些事儿...(PS:上一篇文章中我把这个翻译为“网络表示学习”,虽然这两个意思接近,但是还是以文章里面翻译的“网络表征学习”为准吧!)
1.背景
为什么要提出这个概念?
在《网络表征学习前沿与实践》这篇文章中,作者进行了详细地解释。简单来说就是,当今的数据规模随时间以指数级增长,由于数据之间错综复杂的关联,关联大数据的算力需求与算力供给之间的不平衡,使得关联大数据的处理面临着严峻的挑战。
如何表示这些数据?
“网络”因其强大且灵活的表征能力,成为关联大数据最自然和直接的表达方式。通常,将一个网络表示为由一个点集和边集共同组成的。通常,信息网络构成的图模型可以由邻接矩阵来表示,因此,早期的处理图结构的工作大部分采用高维稀疏向量的形式,再用矩阵分析的方法。然而,由于现实中网络的稀疏性以及其不断增长的规模,又对此类方法提出了严峻的挑战
传统基于网络拓扑的表征方式存在哪些问题?
首先,由于拓扑结构通常导致许多网络的分析与处理算法需要许多迭代和组合计算步骤,因而不可避免地产生高复杂度运算的问题。