网络表征学习简介

网络表征学习(Network Representation Learning)是解决大规模网络处理和分析瓶颈的高效表征方法,它将网络中的节点转换为低维向量形式,便于分析和推理。主要方法包括基于矩阵分解、随机游走和深度神经网络。该领域致力于在保持网络结构的同时,提高处理效率和下游任务的效果。
摘要由CSDN通过智能技术生成

    中国计算机学会通讯(CCF)3月份发布了一个关于网络表征学习的专题,对于想了解这方面知识的朋友来说真是雪中送炭啊,感谢大牛们的好文章,下面就来简单谈一谈关于“网络表征学习(Network Representation Learning NRL)”的那些事儿...(PS:上一篇文章中我把这个翻译为“网络表示学习”,虽然这两个意思接近,但是还是以文章里面翻译的“网络表征学习”为准吧!)

1.背景

    为什么要提出这个概念?

    在《网络表征学习前沿与实践》这篇文章中,作者进行了详细地解释。简单来说就是,当今的数据规模随时间以指数级增长,由于数据之间错综复杂的关联,关联大数据的算力需求与算力供给之间的不平衡,使得关联大数据的处理面临着严峻的挑战。

    如何表示这些数据?

    “网络”因其强大且灵活的表征能力,成为关联大数据最自然和直接的表达方式。通常,将一个网络表示为由一个点集边集共同组成的。通常,信息网络构成的图模型可以由邻接矩阵来表示,因此,早期的处理图结构的工作大部分采用高维稀疏向量的形式,再用矩阵分析的方法。然而,由于现实中网络的稀疏性以及其不断增长的规模,又对此类方法提出了严峻的挑战

    传统基于网络拓扑的表征方式存在哪些问题?

    首先,由于拓扑结构通常导致许多网络的分析与处理算法需要许多迭代和组合计算步骤,因而不可避免地产生高复杂度运算的问题。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值