07_基于DCGAN的图像生成实战之DCGAN生成微笑表情实战

在这里插入图片描述

1. 项目介绍

本项目使用 DCGAN 模型,在自建数据集上进行实验。

本项目使用的数据集是人脸嘴巴区域——微笑表情的数据集

数据集下载链接: https://pan.baidu.com/s/1gzoRh4gtGYC_Ucbne81BUA 提取码: tfos 复制这段内容后打开百度网盘手机App,操作更方便哦

数据集解压后文件夹结构如下,图片供 4357 张

在这里插入图片描述

同时,创建一个 out 文件夹来保存训练的中间结果,主要就是看 DCGAN 是如何从一张噪声照片生成我们期待的图片

import os
import time

if "out" in os.listdir("./data/"):
    print("移除现有 out 文件夹!")
    os.rmdir("./data/out")
time.sleep(1)
print("创建 out 文件夹!")
os.mkdir("./data/out")
移除现有 out 文件夹!
创建 out 文件夹!

2. 导入所需包

from __future__ import print_function
#%matplotlib inline
import argparse
import os
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTML

os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

3. 基本参数配置

# 设置一个随机种子,方便进行可重复性实验
manualSeed = 999
print("Random Seed: ", manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)

# 数据集所在路径
dataroot = "./data/mouth/"
# 数据加载的进程数
workers = 0
# Batch size 大小
batch_size = 64
# Spatial size of training images. All images will be resized to this
# size using a transformer.
# 图片大小
image_size = 64

# 图片的通道数
nc = 3
# Size of z latent vector (i.e. size of generator input)
nz = 100
# Size of feature maps in generator
ngf = 64
# Size of feature maps in discriminator
ndf = 64
# Number of training epochs
num_epochs = 10
# Learning rate for optimizers
lr = 0.0003
# Beta1 hyperparam for Adam optimizers
beta1 = 0.5
# Number of GPUs available. Use 0 for CPU mode.
ngpu = 1

# Decide which device we want to run on
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
Random Seed:  999

4. 导入数据集

# We can use an image folder dataset the way we have it setup.
# Create the dataset
dataset = dset.ImageFolder(root=dataroot,
                           transform=transforms.Compose([
                               transforms.Resize(image_size),
                               transforms.CenterCrop(image_size),
                               transforms.ToTensor(),
                               transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
                           ]))
# Create the dataloader
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
                                         shuffle=True, num_workers=workers)

简单看一下我们的原始数据集长啥样

# Plot some training images
real_batch = next(iter(dataloader))
plt.figure(figsize=(8,8))
plt.axis("off")
plt.title("Training Images")
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=2, normalize=True).cpu(),(1,2,0)))
# plt.show()
<matplotlib.image.AxesImage at 0x27012993ac0>

在这里插入图片描述

5. 定义生成器与判别器

# 权重初始化函数,为生成器和判别器模型初始化
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)

# Generator Code
class Generator(nn.Module):
    def __init__(self, ngpu):
        super(Generator, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            # input is Z, going into a convolution
            nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False),
            nn.BatchNorm2d(ngf * 8),
            nn.ReLU(True),
            # state size. (ngf*8) x 4 x 4
            nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 4),
            nn.ReLU(True),
            # state size. (ngf*4) x 8 x 8
            nn.ConvTranspose2d( ngf * 4, ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.ReLU(True),
            # state size. (ngf*2) x 16 x 16
            nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            # state size. (ngf) x 32 x 32
            nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
            nn.Tanh()
            # state size. (nc) x 64 x 64
        )

    def forward(self, input):
        return self.main(input)


class Discriminator(nn.Module):
    def __init__(self, ngpu):
        super(Discriminator, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            # input is (nc) x 64 x 64
            nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf) x 32 x 32
            nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 2),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*2) x 16 x 16
            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 4),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*4) x 8 x 8
            nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*8) x 4 x 4
            nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
            nn.Sigmoid()
        )

    def forward(self, input):
        return self.main(input)

6. 初始化生成器和判别器

# Create the generator
netG = Generator(ngpu).to(device)

# Handle multi-gpu if desired
if (device.type == 'cuda') and (ngpu > 1):
    netG = nn.DataParallel(netG, list(range(ngpu)))

# Apply the weights_init function to randomly initialize all weights
# to mean=0, stdev=0.2.
netG.apply(weights_init)
# Print the model
print(netG)

# Create the Discriminator
netD = Discriminator(ngpu).to(device)

# Handle multi-gpu if desired
if (device.type == 'cuda') and (ngpu > 1):
    netD = nn.DataParallel(netD, list(range(ngpu)))

# Apply the weights_init function to randomly initialize all weights
#  to mean=0, stdev=0.2.
netD.apply(weights_init)

# Print the model
print(netD)
Generator(
  (main): Sequential(
    (0): ConvTranspose2d(100, 512, kernel_size=(4, 4), stride=(1, 1), bias=False)
    (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU(inplace=True)
    (3): ConvTranspose2d(512, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (5): ReLU(inplace=True)
    (6): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (7): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (8): ReLU(inplace=True)
    (9): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (10): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (11): ReLU(inplace=True)
    (12): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (13): Tanh()
  )
)
Discriminator(
  (main): Sequential(
    (0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (1): LeakyReLU(negative_slope=0.2, inplace=True)
    (2): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (3): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (4): LeakyReLU(negative_slope=0.2, inplace=True)
    (5): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (6): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (7): LeakyReLU(negative_slope=0.2, inplace=True)
    (8): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (9): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (10): LeakyReLU(negative_slope=0.2, inplace=True)
    (11): Conv2d(512, 1, kernel_size=(4, 4), stride=(1, 1), bias=False)
    (12): Sigmoid()
  )
)

7. 定义损失函数

# Initialize BCELoss function
criterion = nn.BCELoss()

8. 开始训练

# Create batch of latent vectors that we will use to visualize
#  the progression of the generator
fixed_noise = torch.randn(64, nz, 1, 1, device=device)

# Establish convention for real and fake labels during training
real_label = 1.0
fake_label = 0.0

# Setup Adam optimizers for both G and D
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))

# Training Loop

# Lists to keep track of progress
img_list = []
G_losses = []
D_losses = []
iters = 0

print("Starting Training Loop...")
# For each epoch
for epoch in range(num_epochs):
    import time
    start = time.time()
    # For each batch in the dataloader
    for i, data in enumerate(dataloader, 0):

        ############################
        # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
        ###########################
        ## Train with all-real batch
        netD.zero_grad()
        # Format batch
        real_cpu = data[0].to(device)
        b_size = real_cpu.size(0)
        label = torch.full((b_size,), real_label, device=device)
        # Forward pass real batch through D
        output = netD(real_cpu).view(-1)
        # Calculate loss on all-real batch
        errD_real = criterion(output, label)
        # Calculate gradients for D in backward pass
        errD_real.backward()
        D_x = output.mean().item()

        ## Train with all-fake batch
        # Generate batch of latent vectors
        noise = torch.randn(b_size, nz, 1, 1, device=device)
        # Generate fake image batch with G
        fake = netG(noise)
        label.fill_(fake_label)
        # Classify all fake batch with D
        output = netD(fake.detach()).view(-1)
        # Calculate D's loss on the all-fake batch
        errD_fake = criterion(output, label)
        # Calculate the gradients for this batch
        errD_fake.backward()
        D_G_z1 = output.mean().item()
        # Add the gradients from the all-real and all-fake batches
        errD = errD_real + errD_fake
        # Update D
        optimizerD.step()

        ############################
        # (2) Update G network: maximize log(D(G(z)))
        ###########################
        netG.zero_grad()
        label.fill_(real_label)  # fake labels are real for generator cost
        # Since we just updated D, perform another forward pass of all-fake batch through D
        output = netD(fake).view(-1)
        # Calculate G's loss based on this output
        errG = criterion(output, label)
        # Calculate gradients for G
        errG.backward()
        D_G_z2 = output.mean().item()
        # Update G
        optimizerG.step()

        # Output training stats
        if i % 50 == 0:
            print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
                  % (epoch, num_epochs, i, len(dataloader),
                     errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))

        # Save Losses for plotting later
        G_losses.append(errG.item())
        D_losses.append(errD.item())

        # Check how the generator is doing by saving G's output on fixed_noise
        if (iters % 20 == 0) or ((epoch == num_epochs-1) and (i == len(dataloader)-1)):

            with torch.no_grad():
                fake = netG(fixed_noise).detach().cpu()

            img_list.append(vutils.make_grid(fake, padding=2, normalize=True))
            i = vutils.make_grid(fake, padding=2, normalize=True)
            fig = plt.figure(figsize=(8, 8))
            plt.imshow(np.transpose(i, (1, 2, 0)))
            plt.axis('off')  # 关闭坐标轴
            plt.savefig("./data/out/%d_%d.png" % (epoch, iters))
            plt.close(fig)
        iters += 1
    print('time:', time.time() - start)

Starting Training Loop...
[0/10][0/69]	Loss_D: 1.0975	Loss_G: 4.8112	D(x): 0.6893	D(G(z)): 0.3159 / 0.0954
[0/10][50/69]	Loss_D: 0.4824	Loss_G: 4.6064	D(x): 0.8130	D(G(z)): 0.1995 / 0.0189
time: 13.753226280212402
[1/10][0/69]	Loss_D: 0.5500	Loss_G: 4.9197	D(x): 0.7818	D(G(z)): 0.1445 / 0.0235
[1/10][50/69]	Loss_D: 0.5982	Loss_G: 3.1465	D(x): 0.7039	D(G(z)): 0.1033 / 0.0676
time: 13.408677339553833
[2/10][0/69]	Loss_D: 2.3809	Loss_G: 1.1063	D(x): 0.1867	D(G(z)): 0.0156 / 0.4683
[2/10][50/69]	Loss_D: 0.8676	Loss_G: 4.0431	D(x): 0.7715	D(G(z)): 0.3795 / 0.0313
time: 14.15134596824646
[3/10][0/69]	Loss_D: 2.0267	Loss_G: 6.5130	D(x): 0.9628	D(G(z)): 0.8000 / 0.0066
[3/10][50/69]	Loss_D: 0.8248	Loss_G: 5.8990	D(x): 0.8961	D(G(z)): 0.4671 / 0.0062
time: 14.044241428375244
[4/10][0/69]	Loss_D: 1.2879	Loss_G: 5.8416	D(x): 0.9309	D(G(z)): 0.5651 / 0.0091
[4/10][50/69]	Loss_D: 0.5999	Loss_G: 3.2066	D(x): 0.6504	D(G(z)): 0.0708 / 0.0681
time: 14.462169408798218
[5/10][0/69]	Loss_D: 1.2421	Loss_G: 1.0341	D(x): 0.4554	D(G(z)): 0.1206 / 0.4578
[5/10][50/69]	Loss_D: 1.0635	Loss_G: 3.4306	D(x): 0.6589	D(G(z)): 0.3860 / 0.0539
time: 14.234107971191406
[6/10][0/69]	Loss_D: 1.6703	Loss_G: 5.9602	D(x): 0.9313	D(G(z)): 0.6313 / 0.0181
[6/10][50/69]	Loss_D: 0.5268	Loss_G: 3.0553	D(x): 0.8090	D(G(z)): 0.2370 / 0.0654
time: 14.24141526222229
[7/10][0/69]	Loss_D: 1.1129	Loss_G: 3.8517	D(x): 0.8774	D(G(z)): 0.5470 / 0.0504
[7/10][50/69]	Loss_D: 0.6979	Loss_G: 3.3661	D(x): 0.8265	D(G(z)): 0.3438 / 0.0485
time: 14.466978311538696
[8/10][0/69]	Loss_D: 3.1995	Loss_G: 4.7117	D(x): 0.9638	D(G(z)): 0.9072 / 0.0244
[8/10][50/69]	Loss_D: 0.6708	Loss_G: 3.3881	D(x): 0.8161	D(G(z)): 0.3295 / 0.0467
time: 14.965966701507568
[9/10][0/69]	Loss_D: 0.9120	Loss_G: 4.0951	D(x): 0.8086	D(G(z)): 0.4406 / 0.0276
[9/10][50/69]	Loss_D: 0.7384	Loss_G: 2.3728	D(x): 0.6775	D(G(z)): 0.2310 / 0.1272
time: 14.140359878540039

9. 绘制损失曲线

plt.figure(figsize=(10,5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses,label="G")
plt.plot(D_losses,label="D")
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.show()

在这里插入图片描述

10. 真假对比

# Grab a batch of real images from the dataloader
# real_batch = next(iter(dataloader))

# Plot the real images
plt.figure(figsize=(15,15))
plt.subplot(1,2,1)
plt.axis("off")
plt.title("Real Images")
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=5, normalize=True).cpu(),(1,2,0)))

# Plot the fake images from the last epoch
plt.subplot(1,2,2)
plt.axis("off")
plt.title("Fake Images")
plt.imshow(np.transpose(img_list[-1],(1,2,0)))
plt.show()

在这里插入图片描述

  • 7
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
DCGAN是一种深度卷积生成对抗网络模型,使用PyTorch来实现DCGAN可以实现生成逼真的图像。下面是一个大致的实战步骤: 1. 数据准备:准备一个包含真实图像的数据集,可以使用图像数据集,如CIFAR-10或ImageNet。将图像转换为PyTorch的数据集格式。 2. 模型定义:定义DCGAN生成器和判别器模型生成模型将随机向量作为输入,并输出合成的图像。判别器模型接受图像作为输入,并输出一个标量值来表示图像的真实度。 3. 初始化参数:初始化生成器和判别器的参数。可以使用PyTorch的内置初始化方法或自定义初始化方法。 4. 训练循环:迭代训练过程中,首先更新判别器的参数,然后更新生成器的参数。对于每个训练迭代,生成生成一批合成图像,判别器根据真实图像和合成图像计算损失,并通过反向传播更新参数。生成器也通过反向传播和优化算法来最小化生成图像与真实图像之间的差异。 5. 可视化结果:在训练过程中,可以定期保存生成器和判别器的参数,并使用这些参数生成图像。可以通过将生成图像与真实图像进行比较来评估生成器的性能。 6. 参数调整和优化:根据生成图像和损失函数的表现,可以调整DCGAN的超参数,如学习率、生成器和判别器的层数、每批训练样本的数量等。通过反复优化和调整,最终可以得到生成逼真图像模型DCGAN是一个非常强大的生成模型,可以用于生成逼真的图像,如人脸、动物和风景等。在实际应用中,可以根据需要调整模型结构、训练数据和超参数,以达到更好的生成效果。使用PyTorch实现DCGAN可以提供灵活性和高效性,并且有大量的资源和社区支持可供参考和学习。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

腾飞开源

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值