【从零开始基于YOLO V8 实现目标检测任务】#0 python + anaconda + CUDA + pytorch + pycharm 环境部署

今天开始记录,基于YOLO V8目标检测的实现过程。从零开始,故期间涉及大量基础知识的学习,都一并记下来,记录自己的成长,也供后来者参考,至少别走我走过的弯路。

0. 各部分作用

  • python

python的作用不必说,就是一门编程语言,需要安装。

  • anaconda

anaconda是干什么用的?

主要是管理环境:每个项目都可以用anaconda建立一个环境,这里面可以选择已安装的某一版python,安装不同的库,每个环境之间互不干扰。

anaconda里面还预装了很多科学计算库(numpy等),可以直接用。

conda包管理器:可以安装管理软件包。这个可以搜conda命令就可以明白。

  • CUDA

用于GPU加速,比如说,训练模型时,通过CUDA可以用显卡替代CPU进行计算,极大程度地提高计算速度。

但CUDA只适用于NVIDIA显卡,且并不是每个型号的显卡都适用,此链接可查阅你的NVIDIA是否支持:https://developer.nvidia.com/cuda-gpus

  • pytorch

这是一个开源的深度学习框架,可理解为一个大库,可以在程序中import。

比较火的有tensorflow、pytorch等,但据我看过的教学视频来说,很多人认为前者已经过时,据说现在基本都用pytorch。

  • pycharm

pycharm是一个IDE,也就是我们在这个里面编写代码,debug,做实验。

1. 安装python

  • 安装前有个大坑需要确认:

依次打开CUDA(CUDA Toolkit 12.6 Update 3 Downloads | NVIDIA Developer) PYTORCH(PyTorch)的官网,确认合适的python版本。

比如下图,pytorch就对python版本有要求,且不同CUDA版本对应的后续安装命令也不同:

但现有的CUDA版本可能并不全,如下图:

所以在安装python前,一定要全面浏览一遍,考虑好每个软件的版本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值