今天开始记录,基于YOLO V8目标检测的实现过程。从零开始,故期间涉及大量基础知识的学习,都一并记下来,记录自己的成长,也供后来者参考,至少别走我走过的弯路。
0. 各部分作用
-
python
python的作用不必说,就是一门编程语言,需要安装。
-
anaconda
anaconda是干什么用的?
主要是管理环境:每个项目都可以用anaconda建立一个环境,这里面可以选择已安装的某一版python,安装不同的库,每个环境之间互不干扰。
anaconda里面还预装了很多科学计算库(numpy等),可以直接用。
conda包管理器:可以安装管理软件包。这个可以搜conda命令就可以明白。
-
CUDA
用于GPU加速,比如说,训练模型时,通过CUDA可以用显卡替代CPU进行计算,极大程度地提高计算速度。
但CUDA只适用于NVIDIA显卡,且并不是每个型号的显卡都适用,此链接可查阅你的NVIDIA是否支持:https://developer.nvidia.com/cuda-gpus
-
pytorch
这是一个开源的深度学习框架,可理解为一个大库,可以在程序中import。
比较火的有tensorflow、pytorch等,但据我看过的教学视频来说,很多人认为前者已经过时,据说现在基本都用pytorch。
-
pycharm
pycharm是一个IDE,也就是我们在这个里面编写代码,debug,做实验。
1. 安装python
-
安装前有个大坑需要确认:
依次打开CUDA(CUDA Toolkit 12.6 Update 3 Downloads | NVIDIA Developer) PYTORCH(PyTorch)的官网,确认合适的python版本。
比如下图,pytorch就对python版本有要求,且不同CUDA版本对应的后续安装命令也不同:
但现有的CUDA版本可能并不全,如下图:
所以在安装python前,一定要全面浏览一遍,考虑好每个软件的版本