从0开始实现目标检测——实践篇

本文详细介绍了基于YOLOv3的目标检测实践,包括安装YOLOv3、训练VOC数据集、计算mAP、自定义数据集训练和模型评估。在VOC数据集上训练的mAP达到0.82,自训数据集的mAP为0.71。文章还提出了进一步优化的计划,如调整参数、尝试YOLOv5和faster-rcnn等。
摘要由CSDN通过智能技术生成

根据上一篇《从0开始实现目标检测——原理篇》的讲述,我们选择了YOLOv3作为模型,那么本篇文章将继续接着上篇的内容,自己动手基于YOLOv3实现模型训练和mAP的计算。 在自己动手的这个过程中,一边解决遇到的问题,一边体会YOLOv3的原理,让我们学习起来吧。

一. YOLOv3之初体验

YOLOv3使用参考官网教程:https://pjreddie.com/darknet/yolo/

1. 安装YOLOv3并体验VOC数据

(1). YOLOv3安装

首先就是下载YOLOv3项目并安装了,如下:

git clone https://github.com/pjreddie/darknet
cd darknet
make

接着就是下载YOLOv3已经提前训练好的一个模型体验下效果了:

wget https://pj
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

guohuang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值