在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。这一类问题近几年来反复出现在信息学的国际国内赛题中,其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受;即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1~3秒)内计算出试题需要的结果,只能用并查集来描述。
举个简单的例子,比如一开始1和2在一个集合,3和4在另外一个集合,现在让1指向3,那么1234都在同一个集合了。现在就有这样的查询,问你1和4是否在同一个集合下面。这样的题目是没法通过简单的数据结构完成的,只能用复杂的数据结构——并查集来实现。
其实简单的说,就是可以使用一个Father数组,两两元素互为father。比如1和2在同一个集合,那么就规定 father[2] = 1。然后查两个元素是否在同一个集合中,就是查询是否能够通过连续的Father查询到相应的下标。
我们来看一下这道题:在平面坐标的第一象限有一系列的点:(1,0),(0,1),(2,2)等等,每个点都是整数点。
输入n,m。n表示坐标点的范围,比如n=1的话,那么就只有4个点:(0,0)(0,1)(1,0)(1,1)
m代表查询的个数。接下来是m行查询。
0 x1 y1 x2 y2代表把点(x1, y1) (x2, y2) 加入到同一个集合中。
1 x1 y1 x2 y2代表查询点(x1, y1) (x2, y2) 是否在同一个集合中。
Sample Input:
2 5
1 0 1 1 0
0 0 0 0 1
0 1 0 1 1
0 0 0 1 1
1 0 1 1 0
Sample Output:
N
Y
解这道题的思路就是用并查集,首先将二维坐标映射到一维:f(x, y) -> x*n+y, 可以证明这样一种映射时单射(具体证明留给读者思考),也就是说两个不同的点的函数值是不同的。
代码如下:
#include <iostream>
#include <cstring>
#include <map>
using namespace std;
// 并查集查询
bool query(int father[], int a, int b) {
while (father[b] != -1) {
if (father[b] == a)
return true;
else {
b = father[b];
}
}
return false;
}
int main() {
int n, m;
int father[1000];
memset(father, -1, sizeof(father)/sizeof(int));
cin >> n >> m;
for (int i = 0; i < m; i++) {
int q, x1, y1, x2, y2;
cin >> q >> x1 >> y1 >> x2 >> y2;
if (q == 0) {
int tmpA = x1 * n + y1;
int tmpB = x2 * n + y2;
if (father[tmpB] == -1) // father数组之前没存过才存
father[tmpB] = tmpA;
else // 若存过了,就调换位置再存储
father[tmpA] = tmpB;
}
if (q == 1) {
int tmpA = x1 * n + y1;
int tmpB = x2 * n + y2;
if (query(father, tmpA, tmpB) || query(father, tmpB, tmpA))
cout << "Y" << endl;
else
cout << "N" << endl;
}
}
for (int i = 0; i < 10; i++)
cout << father[i] << " ";
return 0;
}
并查集解决二维坐标集合问题
2655

被折叠的 条评论
为什么被折叠?



