LLaMA-Factory微调DeepSeek-R1-Distill-Qwen-7B

1.数据准备

为了对比原生模型效果与微调后的效果,这里选择医疗诊断数据medical-o1-reasoning-SFT来进行微调实验,首先将数据转化为LLaMA-Factory支持的Alpaca数据格式,并划分数据集

{
  "instruction": "医疗问题示例",
  "input": "上下文信息",
  "output": "预期回答"
}

相关脚本如下:

from datasets import load_dataset
import json, os

dataset = load_dataset('/workspace/luoshiyong/deepseek-ai/medical_sft/medical-o1-reasoning-SFT', 'zh')
dataset = {"train": dataset['train'][:2000], 'val': dataset['train'][-200:]}
root = '/workspace/luoshiyong/deepseek-ai/medical_sft/convert'
for key in ['train', 'val']:
    list_r = []
    for q, r 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不要绝望总会慢慢变强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值