【洛谷P4841】城市规划【指数型生成函数】【麦克劳林级数】【多项式对数】

传送门

题意:求 N N N个点的带标号无向连通简单图的个数。

N ≤ 130000 N \leq 130000 N130000

这个问题的主要矛盾在于连通

这个并不好表示,但可以用这个表示出不要求连通的方案数

由于带标号,先构造答案的EGF f ( x ) = ∑ i = 0 ∞ a i i ! x i f(x)=\sum_{i=0}^\infin\frac{a_i}{i!}x^i f(x)=i=0i!aixi,其中 a i a_i ai表示 i i i个点的带标号无向连通简单图的个数。

设EGF g ( x ) = ∑ i = 0 ∞ b i i ! x i g(x)=\sum_{i=0}^\infin\frac{b_i}{i!}x^i g(x)=i=0i!bixi表示 i i i个点的带标号无向连通简单图的个数。

显然 b i = 2 C i 2 b_i=2^{C_i^2} bi=2Ci2

然后可以用 f f f表示 g g g:枚举连通块的数量求幂,除以顺序 i ! i! i!( 0 0 0是来凑数的)

g ( x ) = ∑ i = 0 ∞ f i ( x ) i ! g(x)=\sum_{i=0}^\infin\frac{f^i(x)}{i!} g(x)=i=0i!fi(x)

这是什么? e x e^x ex的泰勒展开式啊(泰勒展开在 x 0 = 0 x_0=0 x0=0时称麦克劳林级数)

g ( x ) = e f ( x ) g(x)=e^{f(x)} g(x)=ef(x)

f ( x ) = l n ( g ( x ) ) f(x)=ln(g(x)) f(x)=ln(g(x))

求个 l n ln ln即可

复杂度 O ( n l o g n ) O(nlogn) O(nlogn)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cctype>
#define MAXN 262144
using namespace std;
const int MOD=1004535809;
typedef long long ll;
int fac[MAXN],finv[MAXN];
inline int qpow(int a,int p)
{
	int ans=1;
	while (p)
	{
		if (p&1) ans=(ll)ans*a%MOD;
		a=(ll)a*a%MOD;p>>=1;
	}
	return ans;
}
#define inv(x) qpow(x,MOD-2)
inline int add(const int& x,const int& y){return x+y>=MOD? x+y-MOD:x+y;}
inline int dec(const int& x,const int& y){return x<y? x-y+MOD:x-y;}
int r[MAXN],rt[2][22];
inline void init(const int& l){for (int i=0;i<(1<<l);i++) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));}
void NTT(int* a,int l,int type)
{
	int lim=1<<l;
	for (int i=0;i<lim;i++) if (i<r[i]) swap(a[i],a[r[i]]);
	for (int L=0;L<l;L++)
	{
		int mid=1<<L,len=mid<<1;
		int Wn=rt[type][L+1];
		for (int s=0;s<lim;s+=len)
			for (int k=0,w=1;k<mid;k++,w=(ll)w*Wn%MOD)
			{
				int x=a[s+k],y=(ll)w*a[s+mid+k]%MOD;
				a[s+k]=add(x,y);a[s+mid+k]=dec(x,y);
			}
	}
	if (type)
	{
		int t=inv(lim);
		for (int i=0;i<lim;i++) a[i]=(ll)a[i]*t%MOD;
	}
}
void getinv(int* A,int* B,int n)
{
	static int t[MAXN];
	if (n==1) return (void)(*B=inv(*A));
	getinv(A,B,(n+1)>>1);
	int l=0;
	while ((1<<l)<(n<<1)) ++l;
	for (int i=0;i<n;i++) t[i]=A[i];
	for (int i=n;i<(1<<l);i++) t[i]=B[i]=0;
	init(l);
	NTT(t,l,0);NTT(B,l,0);
	for (int i=0;i<(1<<l);i++) B[i]=(ll)B[i]*(MOD+2-(ll)t[i]*B[i]%MOD)%MOD;
	NTT(B,l,1);
	for (int i=n;i<(1<<l);i++) B[i]=0;
}
inline void deriv(int* A,int* B,int n)
{
	for (int i=0;i<n-1;i++) B[i]=(ll)A[i+1]*(i+1)%MOD;
	B[n-1]=0;
}
inline void integ(int* A,int* B,int n)
{
	for (int i=1;i<n;i++) B[i]=(ll)A[i-1]*finv[i]%MOD*fac[i-1]%MOD;
	B[0]=0;
}
void getln(int* A,int* B,int n)
{
	static int f[MAXN],g[MAXN];
	deriv(A,f,n);getinv(A,g,n);
	int l=0;
	while ((1<<l)<(n<<1)) ++l;
	init(l);
	for (int i=n;i<(1<<l);i++) f[i]=g[i]=0;
	NTT(f,l,0);NTT(g,l,0);
	for (int i=0;i<(1<<l);i++) f[i]=(ll)f[i]*g[i]%MOD;
	NTT(f,l,1);
	integ(f,B,n);
}
int f[MAXN],g[MAXN];
int main()
{
	rt[0][21]=qpow(3,479);rt[1][21]=inv(rt[0][21]);
	for (int i=20;i>=0;i--)
	{
		rt[0][i]=(ll)rt[0][i+1]*rt[0][i+1]%MOD;
		rt[1][i]=(ll)rt[1][i+1]*rt[1][i+1]%MOD;
	}
	int n;
	scanf("%d",&n);
	fac[0]=1;
	for (int i=1;i<=n;i++) fac[i]=(ll)fac[i-1]*i%MOD;
	finv[n]=inv(fac[n]);
	for (int i=n-1;i>=0;i--) finv[i]=(ll)finv[i+1]*(i+1)%MOD;
	for (int i=0;i<=n;i++) f[i]=(ll)qpow(2,((ll)i*(i-1)/2)%(MOD-1))*finv[i]%MOD;
	getln(f,g,n+1);
	printf("%d\n",(ll)g[n]*fac[n]%MOD);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值