数学 - 泰勒公式,常见麦克劳林公式及Maple函数拟合
泰勒公式可以将一个函数在某点展开成多项式函数的形式,通常可用于近似计算。多项式函数是最简单的一类函数,将复杂函数转换成多项式函数可简化对原始函数的研究,求导,求积分都比较方便。麦克劳林公式是泰勒公式在x=0处的展开形式,是泰勒公式的简化版和特例。
泰勒公式:
若函数 f(x) 在包含的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:
上面的多项式称为 f(x) 在点处的泰勒展开式,该公式为泰勒公式。
特别的,当泰勒公式中取0的时候,若f(x)在x=0处n阶连续可导,则下式成立:
该公式称为为麦克劳林公式。
研究泰勒公式(麦克劳林公式)的意义在于其可以将任意一个函数转换成多项式函数的近似表达,这样就能用多项式函数来拟合原函数。
常见麦克劳林公式:
指数函数:
自然对数:
正弦函数:
余弦函数:
Maple函数拟合:
下面通过Mapl来求麦克劳林展开式,及绘制相关的函数图像。
sin(x)
cos(x)