数学 - 泰勒公式,常见麦克劳林公式及Maple函数拟合

本文深入探讨了泰勒公式及其在x=0处的特殊形式——麦克劳林公式,展示了如何使用这些公式将复杂函数转换为多项式函数进行近似计算。并列举了指数函数、自然对数、正弦函数和余弦函数的麦克劳林展开式,最后通过Maple软件演示了函数拟合过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学 - 泰勒公式,常见麦克劳林公式及Maple函数拟合


泰勒公式可以将一个函数在某点展开成多项式函数的形式,通常可用于近似计算。多项式函数是最简单的一类函数,将复杂函数转换成多项式函数可简化对原始函数的研究,求导,求积分都比较方便。麦克劳林公式是泰勒公式在x=0处的展开形式,是泰勒公式的简化版和特例。

泰勒公式:

若函数 f(x) 在包含\large x_0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:

上面的多项式称为 f(x) 在点\large x_0处的泰勒展开式,该公式为泰勒公式。

特别的,当泰勒公式中\large x_0取0的时候,若f(x)在x=0处n阶连续可导,则下式成立:

该公式称为为麦克劳林公式。

研究泰勒公式(麦克劳林公式)的意义在于其可以将任意一个函数转换成多项式函数的近似表达,这样就能用多项式函数来拟合原函数。


常见麦克劳林公式:

指数函数

 

 

自然对数

 

 

正弦函数

 

余弦函数

Maple函数拟合:

下面通过Mapl来求麦克劳林展开式,及绘制相关的函数图像。

sin(x)

cos(x)

 

ln(1+x)

exp(x)

1/(1-x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值