Mapping Text to Knowledge Graph Entities using Multi-Sense LSTMs

方法

    本文方法主要有两部分组成。(1)将知识图谱用带权重的文本特征进行拓展,然后利用随机游走生成集合序列输入到skipgram模型,从而生成KB空间。(2)将text转化为KB中的entity可以通过一个multi-sence监督模型(lstm+消歧机制),将每一个text生成一个KB空间的点。

 

实体向量的文本特征

      对于KB空间,我们将根据Perozzi et al. (2014)提出的通用方法,我们从KB中手工收集一个随机游走的集合,作为skipgram模型的输入。对于一个随机游走的序列n1,n2 ,...,nT,和上下文窗口大小c,skipgram模型将最大化下面这个函数

 

       因此,如果拓扑结构中两个节点相近,则两个向量也比较近。虽然这样的拓扑结构允许点之间相似性的比较,但是并不能直接用于与text to entity的任务,原因是在KB图中形成的社区(以及由此产生的向量空间的拓扑结构)主要反映的是特定于领域的层次结构和本体关系,而这些关系并不一定是通过引用实体的文本表示来体现的。因此,对于所提议的方法,一个重要的问题是如何在两个表示(embedding)之间提供有意义的联系,以便有效地将一种text转换成entity。

      在本文中,我们用文本特征(textual features)链接KG中的每一个点。文本特征与实体之间的边都有权重表示文本特征对实体的重要性。对于每一个实体,我们收集KG本身和BabelNet英语部分中所有可以描述该实体的文本表述。文本表述可以认为是短文档,表述中的每一个词都具有一个tf-idf的值,从而形成实体的文本特征集。

     只是图谱将以下述方式进行扩充:Tc是实体c的文本特征集,对于Tc中任意的t,我们增加一条边(t,c),且权重为tf-idfc(t)

。与Perozzi et al. (2014)使用均匀分布的采样策略相比,本文定义随机游走的过程如下:给定一个随机游走的起点n,其实体邻居集为cn={t1,t2,...,tN},文本特征集合Tn={t1,...,tM}。因此,随机游走序列的下一个节点将通过下诉公式得到

 

 

 

    如果λ=0时,随机游走序列将仅从实体节点集合中获得,因此随机游走序列只包含实体节点。这将与Perozzi et al. (2014)提出的Deepwalk相同;如果λ=1时,效果将不那么直观。由于文本特征只与实体节点相连接,如果当前的节点是文本特征节点,则下一个节点将实体集合Cn中采样。因此当λ=1产生的随机游走路径将是实体节点和文本也正节点交替出现。λ取0-1之间的值,将在上述两种情况进行调整。具体情况如下图所示

 

A multi-sense LSTM

    本文提出一个text-to-entity 的神经网络框架,目标是给定一个text,在KB空间中产生一个点,找到最近的entity或者concept。模型通过训练扩展知识图谱的文本和实体向量。我们的结构对语义歧义是铭感的。所以需要一个消除歧义的机制。具体的网络结构如下图:

 

    网络结构有一个普通的embedding层,一个词义消歧层和两个LSTM网络将text编码为KG空间的向量。最终的目标就是MSE,如下。

 

N为训练样本的个数,x为输入的文本,y为目标实体的向量,f为上述的网络。为了解决词的歧义,每一个词都有一个generic embedding 和 k sense embeddings。sense embeddings可以认为是词在训练集中不同使用的类心,在训练过程中动态更新。此外,每一个词还有一个context embedding,有其上下文词的generic embedding平均得到。在已知context embedding的条件下,每一个sense embedding sij的概率如下,其中s‘ij = tanh(W sij+U ci),W,U和U'为attentional network的参数

 

 

 

sij的更新如下,最终attention的输出为sij与其概率的加权和,然后作为LSTM的输入。

 

 LSTM的输入:context embedding,sense embedding加权和,generic embedding,所以如下图:

 

个人理解:

  1. 加入文本信息,增加知识库中的实体通过文本特征的链接,从而增大知识库的稠密度。并且,从某种程度上加大实体之间的相似度。(本来知识库中两个实体不连接,现在可能通过相同的文本特征链接在一起,使其相似性更进一步)
  2. 利用random walk 采样出序列
  3. 利用skigram模型,学习实体的向量表示
  4. 利用神经网络模型,将text进行向量表示,与3中得到的实体向量进行向量表示,学习出text的三种embedding
  5. 利用word的embedding,通过网络,得到textembedding,选择与其最近的entity embedding,则改entity即为所求
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值