20 篇文章 6 订阅
93 篇文章 4 订阅
142 篇文章 32 订阅

# 曲面偏微分方程：参数化有限元方法

## 利普希茨参数曲面上的FEM

#### 利普希茨参数化曲面

(64)  L − 1 ∣ x 1 − x 2 ∣ ≤ ∣ x ~ 1 − x ~ 2 ∣ ≤ L ∣ x 1 − x 2 ∣ , x ~ i = P ( x i ) , i = 1 , 2 \begin{array}{ll}{\text { (64) }} & {L^{-1}\left|\mathrm{x}_{1}-\mathrm{x}_{2}\right| \leq\left|\widetilde{\mathrm{x}}_{1}-\widetilde{\mathrm{x}}_{2}\right| \leq L\left|\mathrm{x}_{1}-\mathrm{x}_{2}\right|, \quad \tilde{\mathrm{x}}_{i}=\mathrm{P}\left(\mathrm{x}_{i}\right), i=1,2}\end{array}

( 65 ) ω T = ∪ { T ′ : T ′ ∩ T ≠ ∅ } , ω ~ T = P ( ω T ) (65) \quad \omega_{T}=\cup\left\{T^{\prime}: T^{\prime} \cap T \neq \emptyset\right\}, \quad \tilde{\omega}_{T}=\mathbf{P}\left(\omega_{T}\right)

( 66 ) σ : = sup ⁡ T max ⁡ T ∈ T diam ⁡ ( T ) h T (66) \quad \sigma:=\sup _{\mathcal{T}} \max _{T \in \mathcal{T}} \frac{\operatorname{diam}(T)}{h_{T}}

(67)  h T ∣ w ∣ ≲ ∣ D X T w ∣ ≲ h T ∣ w ∣ , ∀ w ∈ R n \begin{array}{ll}{\text { (67) }} & {h_{T}|\mathrm{w}| \lesssim\left|D \mathrm{X}_{T} \mathrm{w}\right| \lesssim h_{T}|\mathrm{w}|, \quad \forall \mathrm{w} \in \mathbb{R}^{n}}\end{array}

( 68 ) h T ∣ w ∣ ≲ ∣ D χ T ( y ) w ∣ ≲ h T ∣ w ∣ ∀ w ∈ R n , y ∈ T ^ (68) \quad h_{T}|\mathrm{w}| \lesssim\left|D \chi_{T}(\mathrm{y}) \mathrm{w}\right| \lesssim h_{T}|\mathrm{w}| \quad \forall \mathrm{w} \in \mathbb{R}^{n}, \mathrm{y} \in \widehat{T}

(69)  L − 1 h T ∣ y 1 − y 2 ∣ ≤ ∣ x ~ 1 − x ~ 2 ∣ ≤ L h T ∣ y 1 − y 2 ∣ \begin{array}{ll}{\text { (69) }} & {L^{-1} h_{T}\left|\mathbf{y}_{1}-\mathbf{y}_{2}\right| \leq\left|\widetilde{\mathbf{x}}_{1}-\widetilde{\mathbf{x}}_{2}\right| \leq L h_{T}\left|\mathbf{y}_{1}-\mathbf{y}_{2}\right|}\end{array}

(70)  v ^ T ( y ) : = v ~ T ( χ T ( y ) ) ∀ x ^ ∈ T ^  and  v T ( x ) : = v ~ T ( P ( x ) ) ∀ x ∈ T \begin{array}{ll}{\text { (70) } \quad \widehat{v}_{T}(\mathbf{y}):=\tilde{v}_{T}\left(\chi_{T}(\mathbf{y})\right) \quad \forall \widehat{\mathbf{x}} \in \widehat{T}} & {\text { and } \quad v_{T}(\mathbf{x}):=\tilde{v}_{T}(\mathbf{P}(\mathbf{x})) \quad \forall \mathbf{x} \in T}\end{array}

#### 多边形曲面上的微分几何

(71)  g T : = ( D X T ) t D X T , q T : = det ⁡ g T , ∀ T ∈ T \begin{array}{ll}{\text { (71) }} & {\mathrm{g}_{T}:=\left(D \mathrm{X}_{T}\right)^{t} D \mathrm{X}_{T}, \quad q_{T}:=\sqrt{\operatorname{det} \mathrm{g}_{T}}, \quad \forall T \in \mathcal{T}}\end{array}

(72)   eigen  ( g T ) ≈ h T 2 , q T ≈ h T n , ∀ T ∈ T \begin{array}{ll}{\text { (72) }} & {\text { eigen }\left(\mathrm{g}_{T}\right) \approx h_{T}^{2}, \quad q_{T} \approx h_{T}^{n}, \quad \forall T \in \mathcal{T}}\end{array}

( 73 ) S χ ≈ 1 (73) \quad S_{\chi} \approx 1

C 1 ≤ q q Γ ≤ C 2 C_{1} \leq \frac{q}{q_{\Gamma}} \leq C_{2}

(75)  ∇ v ^ = ( D X ) t ∇ T v , ∇ T v = ( D X ) g Γ − 1 ∇ v ^ \begin{array}{ll}{\text { (75) }} & {\nabla \widehat{v}=(D \mathrm{X})^{t} \nabla_{\mathrm{T}} v, \quad \nabla_{\mathrm{T}} v=(D \mathrm{X}) \mathrm{g}_{\mathrm{\Gamma}}^{-1} \nabla \widehat{v}}\end{array}
(76)  Δ Γ v = 1 q Γ div ⁡ ( q Γ g Γ − 1 ∇ v ^ ) \begin{array}{ll}{\text { (76) }} & {\Delta_{\Gamma} v=\frac{1}{q_{\Gamma}} \operatorname{div}\left(q_{\Gamma} \mathbf{g}_{\Gamma}^{-1} \nabla \widehat{v}\right)}\end{array}

∫ Γ ∇ Γ v ⋅ ∇ Γ w = ∑ T ∈ T − ∫ T w Δ Γ v + ∫ ∂ T w ∇ Γ v ⋅ μ T = ∑ T ∈ T − ∫ T w Δ Γ v + ∑ S ∈ S ∫ S w [ ∇ Γ v ] \begin{aligned} \int_{\Gamma} \nabla_{\Gamma} v \cdot \nabla_{\Gamma} w &=\sum_{T \in \mathcal{T}}-\int_{T} w \Delta_{\Gamma} v+\int_{\partial T} w \nabla_{\Gamma} v \cdot \boldsymbol{\mu}_{T} \\ &=\sum_{T \in \mathcal{T}}-\int_{T} w \Delta_{\Gamma} v+\sum_{S \in \mathcal{S}} \int_{S} w\left[\nabla_{\Gamma} v\right] \end{aligned}

( 77 ) [ ∇ Γ v ] : = ∇ Γ v + ⋅ μ + + ∇ Γ v − ⋅ μ − (77) \quad\left[\nabla_{\Gamma} v\right]:=\nabla_{\Gamma} v_{+} \cdot \mu_{+}+\nabla_{\Gamma} v_{-} \cdot \mu_{-}

#### 参数化有限元方法

(78)  ∫ Γ ∇ Γ U ⋅ ∇ Γ V = ∫ Γ F V ∀ V ∈ V # ( T ) \begin{array}{ll}{\text { (78) }} & {\int_{\Gamma} \nabla_{\Gamma} U \cdot \nabla_{\Gamma} V=\int_{\Gamma} F V \quad \forall V \in \mathbb{V}_{\#}(\mathcal{T})}\end{array}

V ( T ) : = { V ∈ C 0 ( Γ ) ∣ V ∣ T = V ^ ∘ X − 1  for some  V ^ ∈ P , T ∈ T } \mathbb{V}(\mathcal{T}):=\left\{V \in C^{0}(\Gamma)|V|_{T}=\widehat{V} \circ \mathrm{X}^{-1} \text { for some } \widehat{V} \in \mathcal{P}, T \in \mathcal{T}\right\}
V # ( T ) : = V ( T ) ∩ L 2 , # ( Γ ) \mathbb{V}_{\#}(\mathcal{T}):=\mathbb{V}(\mathcal{T}) \cap L_{2, \#}(\Gamma)
P \mathcal{P} 是线性多项式空间。

(79)  ∫ Γ ∇ Γ U ⋅ ∇ Γ V = ∫ Γ F V ∀ V ∈ V ( T ) \text { (79) } \quad \int_{\Gamma} \nabla_{\Gamma} U \cdot \nabla_{\Gamma} V=\int_{\Gamma} F V \quad \forall V \in \mathbb{V}(\mathcal{T})

∫ Γ ∇ Γ ( u − U ) ⋅ ∇ Γ V = ∫ γ ∇ γ u ~ ⋅ ∇ γ V ~ + ∫ Γ ∇ Γ u ⋅ E Γ ∇ Γ V − ∫ Γ F V \int_{\Gamma} \nabla_{\Gamma}(u-U) \cdot \nabla_{\Gamma} V=\int_{\gamma} \nabla_{\gamma} \widetilde{u} \cdot \nabla_{\gamma} \widetilde{V}+\int_{\Gamma} \nabla_{\Gamma} u \cdot \mathbf{E}_{\Gamma} \nabla_{\Gamma} V-\int_{\Gamma} F V

## 几何一致性

#### Γ \Gamma 上的一致庞加莱估计

(82)  ∥ v ∥ L 2 ( Γ ) ≲ ∥ ∇ v ∥ L 2 ( Γ ) ∀ v ∈ H # 1 ( Γ ) \begin{array}{ll}{\text { (82) }} & {\|v\|_{L_{2}(\Gamma)} \lesssim\|\nabla v\|_{L_{2}(\Gamma)} \quad \forall v \in H_{\#}^{1}(\Gamma)}\end{array}

#### 几何估计量

(83)  λ T : = ∥ D ( P − I T P ) ∥ L ∞ ( T ) = ∥ D P − I ∥ L ∞ ( T ) ∀ T ∈ T \text { (83) } \quad \lambda_{T}:=\left\|D\left(\mathbf{P}-\mathcal{I}_{\mathcal{T}} \mathbf{P}\right)\right\|_{L_{\infty}(T)}=\|D \mathbf{P}-\mathbf{I}\|_{L_{\infty}(T)} \quad \forall T \in \mathcal{T}

(84)  λ T ( Γ ) : = max ⁡ T ∈ T λ T \begin{array}{ll}{\text { (84) }} & {\lambda_{\mathcal{T}}(\Gamma):=\max _{T \in \mathcal{T}} \lambda_{T}}\end{array}

( 85 ) max ⁡ y ∈ T ˉ ∣ D ( χ T − X T ) ( y ) ∣ min ⁡ { ∣ D − χ T ( y ) ∣ , ∣ D − X T ( y ) ∣ } ≤ S χ λ T ∀ T ∈ T (85) \quad \max _{\mathbf{y} \in \bar{T}} \frac{\left|D\left(\chi_{T}-\mathbf{X}_{T}\right)(\mathbf{y})\right|}{\min \left\{\left|D^{-} \chi_{T}(\mathbf{y})\right|,\left|D^{-} \mathbf{X}_{T}(\mathbf{y})\right|\right\}} \leq S_{\chi} \lambda_{T} \quad \forall T \in \mathcal{T}

(86)  β T : = ∥ P − I T P ∥ L ∞ ( T ) , β T ( Γ ) : = max ⁡ T ∈ T β T \begin{array}{ll}{\text { (86) }} & {\beta_{T}:=\left\|\mathbf{P}-\mathcal{I}_{\mathcal{T}} \mathbf{P}\right\|_{L_{\infty}(T)}, \quad \beta_{\mathcal{T}}(\Gamma):=\max _{T \in \mathcal{T}} \beta_{T}}\end{array}
( 87 ) μ T : = β T + λ T 2 , μ T ( Γ ) : = max ⁡ T ∈ T μ T (87) \quad \mu_{T}:=\beta_{T}+\lambda_{T}^{2}, \quad \mu_{\mathcal{T}}(\Gamma):=\max _{T \in \mathcal{T}} \mu_{T}

#### C1曲面的几何一致性误差

Corollary  32  (geometric consistency errors for  C 1 , α  surfaces). If  X  and  χ  satisfy  ( 67 )  and  ( 68 ) ,  then for all  T ∈ T  we have   (88)  ∥ 1 − q − 1 q Γ ∥ L ∞ ( T ^ ) , ∥ I − grg ⁡ − 1 ∥ L ∞ ( T ^ ) , ∥ ν Γ − ν ∥ L ∞ ( T ) ≲ λ T  where the hidden constants depend on  S χ ≈ 1  defined in  ( 38 ) .  Moreover,   (89)  ∥ E ∥ L ∞ ( T ^ ) + ∥ E Γ ∥ L ∞ ( T ^ ) ≲ λ T ∀ T ∈ T \begin{array}{l}{\text { Corollary } 32 \text { (geometric consistency errors for } C^{1, \alpha} \text { surfaces). If } \mathrm{X} \text { and } \chi \text { satisfy }} \\ {(67) \text { and }(68), \text { then for all } T \in \mathcal{T} \text { we have }} \\ {\begin{array}{ll}{\text { (88) }\left\|1-q^{-1} q_{\Gamma}\right\|_{L_{\infty}(\widehat{T})},\left\|\mathbf{I}-\operatorname{grg}^{-1}\right\|_{L_{\infty}(\widehat{T})},\left\|\nu_{\Gamma}-\nu\right\|_{L_{\infty}(T)} \lesssim \lambda_{T}} \\ {\text { where the hidden constants depend on } S_{\chi} \approx 1 \text { defined in }(38) . \text { Moreover, }} \\ {\text { (89) }} & {\|\mathbf{E}\|_{L_{\infty}(\widehat{T})}+\left\|\mathbf{E}_{\Gamma}\right\|_{L_{\infty}(\widehat{T})} \lesssim \lambda_{T} \quad \forall T \in \mathcal{T}}\end{array}}\end{array}

#### C2曲面的几何一致性误差

(90)  β T ( Γ ) < 1 2 K ∞ ⇒ Γ ⊂ N \begin{array}{ll}{\text { (90) }} & {{ \beta }_\mathcal{T}(\Gamma)<\frac{1}{2 K_{\infty}} \Rightarrow \Gamma \subset \mathcal{N}}\end{array}

( 91 ) P d ∘ P − 1 ( T ~ ) ⊂ ω ~ T ∀ T ∈ T (91) \quad \mathrm{P}_{d} \circ \mathrm{P}^{-1}(\widetilde{T}) \subset \widetilde{\omega}_{T} \quad \forall T \in \mathcal{T}

( 92 ) ∣ x ~ − P d ∘ P − 1 ( x ~ ) ∣ = ∣ P ( x ) − P d ( x ) ∣ ≤ 2 β T ∀ x ∈ T (92) \quad\left|\widetilde{\mathbf{x}}-\mathbf{P}_{d} \circ \mathbf{P}^{-1}(\widetilde{\mathbf{x}})\right|=\left|\mathbf{P}(\mathbf{x})-\mathbf{P}_{d}(\mathbf{x})\right| \leq 2 \beta_{T} \quad \forall \mathbf{x} \in T

Corollary  33  (geometric consistency errors for  C 2  surfaces). If  ( 90 )  and  ( 74 )  hold, then so do the following estimates for all  T ∈ T  (93)  ∥ d ∥ L ∞ ( T ) ≲ β T , ∥ ν − ν Γ ∥ L ∞ ( T ) ≲ λ T , ∥ 1 − q − 1 q Γ ∥ L ∞ ( T ) ≲ μ T  where all the geometric quantities are defined using the parametrizations  χ = P d ∘ X  and  X .  Moreover,   (94)  ∥ E ∥ L ∞ ( T ) , ∥ E Γ ∥ L ∞ ( T ) ≲ μ T ∀ T ∈ T \begin{array}{l}{\text { Corollary } 33 \text { (geometric consistency errors for } C^{2} \text { surfaces). If }(90) \text { and }(74)} \\ {\text { hold, then so do the following estimates for all } T \in \mathcal{T}} \\ {\text { (93) }\|d\|_{L_{\infty}(T)} \lesssim \beta_{T}, \quad\left\|\nu-\nu_{\Gamma}\right\|_{L_{\infty}(T)} \lesssim \lambda_{T}, \quad\left\|1-q^{-1} q_{\Gamma}\right\|_{L_{\infty}(T)} \lesssim \mu_{T}} \\ {\text { where all the geometric quantities are defined using the parametrizations } \chi=\mathbf{P}_{d} \circ \mathbf{X}} \\ {\text { and } \mathbf{X} . \text { Moreover, }} \\ {\begin{array}{llll}{\text { (94) }} & {\|\mathbf{E}\|_{L_{\infty}(T)},\left\|\mathbf{E}_{\Gamma}\right\|_{L_{\infty}(T)}} & {\lesssim \mu_{T}} & {\forall T \in \mathcal{T}}\end{array}}\end{array}

∣ w ~ ( x ~ ) − w ~ ( P d ∘ P − 1 ( x ~ ) ) ∣ ≤ ∥ ∇ γ w ~ ∥ L ∞ ( ω ~ T ) ∣ x ~ − P d ∘ P − 1 ( x ~ ) ∣ ≤ 2 ∥ ∇ γ w ~ ∥ L ∞ ( ω ~ T ) β T \left|\widetilde{w}(\widetilde{\mathbf{x}})-\widetilde{w}\left(\mathbf{P}_{d} \circ \mathbf{P}^{-1}(\widetilde{\mathbf{x}})\right)\right| \leq\left\|\nabla_{\gamma} \widetilde{w}\right\|_{L_{\infty}\left(\widetilde{\omega}_{T}\right)}\left|\widetilde{\mathbf{x}}-\mathbf{P}_{d} \circ \mathbf{P}^{-1}(\widetilde{\mathbf{x}})\right| \leq 2\left\|\nabla_{\gamma} \widetilde{w}\right\|_{L_{\infty}\left(\widetilde{\omega}_{T}\right)} \beta_{T}

Proposition 34 (mismatch between  P  and  P d  ). Assume that (67) as well as the   assumptions (74), (90) and (91) hold. Then there exists  λ ∗ > 0  such for  w ~ ∈ H 1 ( γ )  and  T ∈ T  we have  ∥ w ~ − w ~ ∘ P d ∘ P − 1 ∥ L 2 ( T ~ ) ≲ β T ∥ w ~ ∥ H 1 ( ω ~ T )  provided  λ T ≤ λ ∗  and  ω ~ T  is a patch in  γ  around  T ~ . \begin{array}{l}{\text { Proposition 34 (mismatch between } \mathbf{P} \text { and } \mathbf{P}_{d} \text { ). Assume that (67) as well as the }} \\ {\text { assumptions (74), (90) and (91) hold. Then there exists } \lambda_{*}>0 \text { such for } \widetilde{w} \in H^{1}(\gamma)} \\ {\text { and } T \in \mathcal{T} \text { we have }} \\ {\qquad\left\|\widetilde{w}-\widetilde{w} \circ \mathbf{P}_{d} \circ \mathbf{P}^{-1}\right\|_{L_{2}(\widetilde{T})} \lesssim \beta_{T}\|\widetilde{w}\|_{H^{1}\left(\widetilde{\omega}_{T}\right)}} \\ {\text { provided } \lambda_{T} \leq \lambda_{*} \text { and } \widetilde{\omega}_{T} \text { is a patch in } \gamma \text { around } \widetilde{T} .}\end{array}

• reduce到 R n \mathbb{R}^{n}
• 光滑化
• 估计各项
• ϵ \epsilon 的界

∥ w ~ − w ~ ∘ ψ ∥ L 2 ( T ~ ) ≲ h T n / 2 ∥ w ^ − w ^ ∘ ψ ^ ∥ L 2 ( T ^ ) \|\widetilde{w}-\widetilde{w} \circ \psi\|_{L_{2}(\widetilde{T})} \lesssim h_{T}^{n / 2}\|\widehat{w}-\widehat{w} \circ \widehat{\psi}\|_{L_{2}(\widehat{T})}

∥ w ^ − w ^ ∘ ψ ^ ∥ L 2 ( T ^ ) ≲ ∥ w ^ − w ^ ε ∥ L 2 ( T ^ ) + ∥ w ^ ε − w ^ ε ∘ ψ ^ ∥ L 2 ( T ^ ) + ∥ w ^ ε ∘ ψ ^ − w ^ ∘ ψ ^ ∥ L 2 ( T ^ ) \|\widehat{w}-\widehat{w} \circ \widehat{\psi}\|_{L_{2}(\widehat{T})} \lesssim\left\|\widehat{w}-\widehat{w}_{\varepsilon}\right\|_{L_{2}(\widehat{T})}+\left\|\widehat{w}_{\varepsilon}-\widehat{w}_{\varepsilon} \circ \widehat{\psi}\right\|_{L_{2}(\widehat{T})}+\left\|\widehat{w}_{\varepsilon} \circ \widehat{\psi}-\widehat{w} \circ \widehat{\psi}\right\|_{L_{2}(\widehat{T})}

∥ w ^ − w ^ ε ∥ L 2 ( T ^ ) ≲ ε ∣ w ^ ∣ H 1 ( R n ) ≲ ε ∣ w ^ ∣ H 1 ( ω ^ T ) \left\|\widehat{w}-\widehat{w}_{\varepsilon}\right\|_{L_{2}(\widehat{T})} \lesssim \varepsilon|\widehat{w}|_{H^{1}\left(\mathbb{R}^{n}\right)} \lesssim \varepsilon|\widehat{w}|_{H^{1}\left(\widehat{\omega}_{T}\right)}

∥ ( w ^ ε − w ^ ) ∘ ψ ^ ∥ L 2 ( T ^ ) ≲ ∥ w ^ ε − w ^ ∥ L 2 ( ω ^ T ) ≲ ε ∣ w ^ ∣ H 1 ( ω ^ T ) \left\|\left(\widehat{w}_{\varepsilon}-\widehat{w}\right) \circ \widehat{\psi}\right\|_{L_{2}(\widehat{T})} \lesssim\left\|\widehat{w}_{\varepsilon}-\widehat{w}\right\|_{L_{2}\left(\widehat{\omega}_{T}\right)} \lesssim \varepsilon|\widehat{w}|_{H^{1}\left(\widehat{\omega}_{T}\right)}

∥ w ^ ε − w ^ ε ∘ ψ ^ ∥ L 2 ( T ^ ) 2 ≲ ε n ∑ i ∥ w ^ ε − w ^ ε ∘ ψ ^ ∥ L ∞ ( B ( y i , ε ) ∩ T ^ ) ≲ ε 2 ∑ i ∣ w ^ ∣ H 1 2 ( B ( y i , 3 ε ) ) ≲ ε 2 ∣ w ^ ∣ H 1 ( R n ) 2 ≲ ε 2 ∣ w ^ ∣ H 1 ( ω ^ T ) 2 \begin{aligned}\left\|\widehat{w}_{\varepsilon}-\widehat{w}_{\varepsilon} \circ \widehat{\psi}\right\|_{L_{2}(\widehat{T})}^{2} & \lesssim \varepsilon^{n} \sum_{i}\left\|\widehat{w}_{\varepsilon}-\widehat{w}_{\varepsilon} \circ \widehat{\psi}\right\|_{L_{\infty}\left(B\left(\mathbf{y}_{i}, \varepsilon\right) \cap \widehat{T}\right)} \\ & \lesssim \varepsilon^{2} \sum_{i}|\widehat{w}|_{H^{1}}^{2}\left(B\left(\mathbf{y}_{i}, 3 \varepsilon\right)\right) \lesssim \varepsilon^{2}|\widehat{w}|_{H^{1}\left(\mathbb{R}^{n}\right)}^{2} \lesssim \varepsilon^{2}|\widehat{w}|_{H^{1}\left(\widehat{\omega}_{T}\right)}^{2} \end{aligned}

ε ≤ 2 L h T − 1 β T \varepsilon \leq 2 L h_{T}^{-1} \beta_{T}

∥ w ~ − w ~ ∘ ψ ∥ L 2 ( T ~ ) 2 ≲ h T n ∥ w ^ − w ^ ∘ ψ ^ ∥ L 2 ( T ^ ) 2 ≲ h T n ε 2 ∣ w ^ ∣ H 1 ( ω ^ T ) 2 ≲ h T n h T − 2 β T 2 h T 2 − n ∣ w ~ ∣ H 1 ( w ~ T ) 2 = β T 2 ∣ w ~ ∣ H 1 ( ω ~ T ) 2 \begin{aligned}\|\widetilde{w}-\widetilde{w} \circ \psi\|_{L_{2}(\widetilde{T})}^{2} & \lesssim h_{T}^{n}\|\widehat{w}-\widehat{w} \circ \widehat{\psi}\|_{L_{2}(\widehat{T})}^{2} \lesssim h_{T}^{n} \varepsilon^{2}|\widehat{w}|_{H^{1}\left(\widehat{\omega}_{T}\right)}^{2} \\ & \lesssim h_{T}^{n} h_{T}^{-2} \beta_{T}^{2} h_{T}^{2-n}|\widetilde{w}|_{H^{1}\left(\widetilde{w}_{T}\right)}^{2}=\beta_{T}^{2}|\widetilde{w}|_{H^{1}\left(\widetilde{\omega}_{T}\right)}^{2} \end{aligned}

Proposition 35 (Lipschitz perturbation). Let  Ω 1 , Ω 2 ⊂ ⊂ Ω ⊂ R n + 1  be Lipschitz  bounded domains and  L : Ω 1 → Ω 2  be a bi-Lipschitz isomorphism. If  r : = max ⁡ x ∈ Ω 1 ∣ L ( x ) − x ∣  is sufficiently small so that  ( Ω 1 ∪ Ω 2 ) + B ( 0 , r ) ⊂ Ω  then for all  g ∈ H 1 ( Ω )  we have  ∥ g − g ∘ L ∥ L 2 ( Ω 1 ) ≲ r ∥ g ∥ H 1 ( Ω ) \begin{array}{l}{\text { Proposition 35 (Lipschitz perturbation). Let } \Omega_{1}, \Omega_{2} \subset \subset \Omega \subset \mathbb{R}^{n+1} \text { be Lipschitz}} \\ {\text { bounded domains and } \mathbf{L}: \Omega_{1} \rightarrow \Omega_{2} \text { be a bi-Lipschitz isomorphism. If }} \\ {\qquad r:=\max _{\mathbf{x} \in \Omega_{1}}|\mathbf{L}(\mathbf{x})-\mathbf{x}|} \\ {\text { is sufficiently small so that }\left(\Omega_{1} \cup \Omega_{2}\right)+B(0, r) \subset \Omega \text { then for all } g \in H^{1}(\Omega) \text { we have }} \\ {\qquad\|g-g \circ \mathbf{L}\|_{L^{2}\left(\Omega_{1}\right)} \lesssim r\|g\|_{H^{1}(\Omega)}}\end{array}

## 先验误差分析

#### C2曲面的先验误差估计

Lemma  36  (approximability in  H 1 ( Γ ) ) .  Let  γ  be a surface of class  C 2  and  u ~ ∈ H 2 ( γ ) .  Let  K ∞  be defined in  ( 30 )  and  β T ( Γ )  be given in  ( 86 ) .  Then we have   (95)  inf ⁡ V ∈ V ( T ) ∥ ∇ Γ ( u ~ ∘ P d − V ) ∥ L 2 ( Γ ) ≲ h T ∣ u ~ ∣ H 2 ( γ ) + β T ( Γ ) K ∞ ∥ ∇ γ u ~ ∥ L 2 ( γ ) \begin{array}{l}{ \text { Lemma }\left.36 \text { (approximability in } H^{1}(\Gamma)\right) . \text { Let } \gamma \text { be a surface of class } C^{2} \text { and } \widetilde{u} \in} \\ {H^{2}(\gamma) . \text { Let } K_{\infty} \text { be defined in }(30) \text { and } \beta_{\mathcal{T}}(\Gamma) \text { be given in }(86) . \text { Then we have }} \\ {\begin{array}{llll}{\text { (95) }} & {\inf _{V \in \mathrm{V}(\mathcal{T})}\left\|\nabla_{\Gamma}\left(\widetilde{u} \circ \mathbf{P}_{d}-V\right)\right\|_{L_{2}(\Gamma)}} & {\lesssim h_{\mathcal{T}}|\widetilde{u}|_{H^{2}(\gamma)}+\beta_{\mathcal{T}}(\Gamma) K_{\infty}\left\|\nabla_{\gamma} \widetilde{u}\right\|_{L_{2}(\gamma)}}\end{array}}\end{array}

( 96 ) inf ⁡ V ∈ V ( T ) ∥ ∇ Γ ( u ~ ∘ P d − V ) ∥ L 2 ( Γ ) 2 ≲ ∑ T ∈ T inf ⁡ V T ∈ V ( T ) ∥ ∇ Γ ( u ~ ∘ P d − V T ) ∥ L 2 ( T ) 2 (96) \quad \inf _{V \in \mathbf{V}(\mathcal{T})}\left\|\nabla_{\Gamma}\left(\widetilde{u} \circ \mathbf{P}_{d}-V\right)\right\|_{L_{2}(\Gamma)}^{2} \lesssim \sum_{T \in \mathcal{T}} \inf _{V_{T} \in \mathbf{V}(T)}\left\|\nabla_{\Gamma}\left(\widetilde{u} \circ \mathbf{P}_{d}-V_{T}\right)\right\|_{L_{2}(T)}^{2}

Theorem  37 ( H 1  a-priori error estimate for  C 2  surfaces). Let  γ  be of class  C 2 f ~ ∈ L 2 , # ( γ )  and  u ~ ∈ H 2 ( γ )  be the solution of  ( 18 ) .  Let  U ∈ V # ( T )  be the solution   to  ( 78 )  with  F = f ~ ∘ P q q r  defined via the lift  P .  If the geometric assumptions  ( 69 ) ,  (90), and (91) are valid, then  ∥ ∇ Γ ( u ~ ∘ P − U ) ∥ L 2 ( Γ ) ≲ ( h T + λ τ ( Γ ) ) ∥ f ~ ∥ L 2 ( γ ) ≲ h τ ∥ f ~ ∥ L 2 ( γ )  as well as  ∥ ∇ Γ ( u ~ ∘ P d − U ) ∥ L 2 ( Γ ) ≲ ( h T + μ T ( Γ ) ) ∥ f ~ ∥ L 2 ( γ ) ≲ h T ∥ f ~ ∥ L 2 ( γ ) \begin{array}{l}{\text { Theorem } 37\left(H^{1} \text { a-priori error estimate for } C^{2} \text { surfaces). Let } \gamma \text { be of class } C^{2}\right.} \\ {\tilde{f} \in L_{2, \#}(\gamma) \text { and } \widetilde{u} \in H^{2}(\gamma) \text { be the solution of }(18) . \text { Let } U \in \mathbb{V}_{\#}(\mathcal{T}) \text { be the solution }} \\ {\text { to }(78) \text { with } F=\widetilde{f} \circ \mathbf{P} \frac{q}{q_{\mathrm{r}}} \text { defined via the lift } \mathbf{P} . \text { If the geometric assumptions }(69),} \\ {\text { (90), and (91) are valid, then }} \\ {\qquad\left\|\nabla_{\Gamma}(\widetilde{u} \circ \mathbf{P}-U)\right\|_{L_{2}(\Gamma)} \lesssim(h _\mathcal{T}+\lambda \tau(\Gamma))\|\widetilde{f}\|_{L_{2}(\gamma)} \lesssim h \tau\|\widetilde{f}\|_{L_{2}(\gamma)}} \\ {\text { as well as }} \\ {\qquad\left\|\nabla_{\Gamma}\left(\widetilde{u} \circ \mathbf{P}_{d}-U\right)\right\|_{L_{2}(\Gamma)} \lesssim\left(h_{\mathcal{T}}+\mu_{\mathcal{T}}(\Gamma)\right)\|\tilde{f}\|_{L_{2}(\gamma)} \lesssim h_{\mathcal{T}}\|\tilde{f}\|_{L_{2(\gamma)}}}\end{array}

L 2 L^2 空间中，我们也有相应的估计：
Theorem 38 (  L 2  a-priori error estimate for  C 2  surfaces). Let  γ  be of class  C 2  and   be described by a generic lift  P  of class  C 2 .  Let the geometric conditions  ( 69 ) ,  ,   and  ( 91 )  be satisfied. Let  u ~ ∈ H # 1 ( γ )  solve  ( 19 )  and  U ∈ V # ( T )  solve  ( 78 )  with  F = f ~ ∘ P q q T .  Then   (97)  ∥ u ~ ∘ P − U ∥ L 2 ( Γ ) ≲ h T 2 ∥ f ~ ∥ L 2 ( γ ) \begin{array}{l}{\text { Theorem 38 ( } L_{2} \text { a-priori error estimate for } C^{2} \text { surfaces). Let } \gamma \text { be of class } C^{2} \text { and }} \\ {\text { be described by a generic lift } \mathbf{P} \text { of class } C^{2} . \text { Let the geometric conditions }(69), \text { , }} \\ {\text { and }(91) \text { be satisfied. Let } \widetilde{u} \in H_{\#}^{1}(\gamma) \text { solve }(19) \text { and } U \in \mathbb{V}_{\#}(\mathcal{T}) \text { solve }(78) \text { with }} \\ {F=\widetilde{f} \circ \mathbf{P} \frac{q}{q_{\mathrm{T}}} . \text { Then }} \\ {\begin{array}{ll}{\text { (97) }} & {\|\widetilde{u} \circ \mathbf{P}-U\|_{L_{2}(\Gamma)} \lesssim h_{\mathcal{T}}^{2}\|\widetilde{f}\|_{L_{2}(\gamma)}}\end{array}}\end{array}

∫ γ ∇ γ z ~ ⋅ ∇ γ w ~ = ∫ γ ( u ~ − U ~ # ) w ~ ∀ w ~ ∈ H # 1 ( γ ) \int_{\gamma} \nabla_{\gamma} \widetilde{z} \cdot \nabla_{\gamma} \widetilde{w}=\int_{\gamma}\left(\widetilde{u}-\widetilde{U}_{\#}\right) \widetilde{w} \quad \forall \widetilde{w} \in H_{\#}^{1}(\gamma)

∫ Γ ∇ Γ Z ⋅ ∇ Γ W = ∫ Γ ( u # − U ) W , ∀ W ∈ V ( T ) \int_{\Gamma} \nabla_{\Gamma} Z \cdot \nabla_{\Gamma} W=\int_{\Gamma}\left(u_{\#}-U\right) W, \quad \forall W \in \mathbb{V}(\mathcal{T})

∥ u ~ − U ~ # ∥ L 2 ( γ ) 2 = ∫ γ ∇ γ ( u ~ − U ~ ) ⋅ ∇ γ ( z ~ − Z ~ ) + ∫ γ f ~ ( Z ∘ P d − 1 − Z ∘ P − 1 ) + ∫ γ ∇ γ U ~ ⋅ E ∇ γ Z ~ \begin{aligned}\left\|\widetilde{u}-\widetilde{U}_{\#}\right\|_{L_{2}(\gamma)}^{2} &=\int_{\gamma} \nabla_{\gamma}(\widetilde{u}-\widetilde{U}) \cdot \nabla_{\gamma}(\widetilde{z}-\widetilde{Z}) \\ &+\int_{\gamma} \widetilde{f}\left(Z \circ \mathbf{P}_{d}^{-1}-Z \circ \mathbf{P}^{-1}\right) \\ &+\int_{\gamma} \nabla_{\gamma} \widetilde{U} \cdot \mathbf{E} \nabla_{\gamma} \widetilde{Z} \end{aligned}

(99)  ∥ u ~ ∘ P − U ∥ L 2 ( Γ ) ≲ h T 2 ∣ d ∣ W ∞ 2 ( N ) ∥ f ~ ∥ L 2 ( γ ) \begin{array}{ll}{\text { (99) }} & {\|\widetilde{u} \circ \mathbf{P}-U\|_{L_{2}(\Gamma)} \lesssim h_{\mathcal{T}}^{2}|d|_{W_{\infty}^{2}(\mathcal{N})}\|\widetilde{f}\|_{L_{2}(\gamma)}}\end{array}

#### C1曲面的先验误差估计

Lemma  39  (approximability in  H 1 ( Γ ) ) .  Let  γ  be a surface of class  C 1 , α  and  u ~ ∈ H 1 + s ( γ ) ,  where  0 < s < α < 1  or  0 < s ≤ α = 1.  Then we have   (100)  inf ⁡ V ∈ V ( T ) ∥ ∇ Γ ( u ~ ∘ P − V ) ∥ L 2 ( Γ ) ≲ h T s ∣ u ~ ∣ H 1 + s ( γ ) \begin{array}{l}{ \text { Lemma }\left.39 \text { (approximability in } H^{1}(\Gamma)\right) . \text { Let } \gamma \text { be a surface of class } C^{1, \alpha} \text { and }} \\ {\widetilde{u} \in H^{1+s}(\gamma), \text { where } 0<s<\alpha<1 \text { or } 0<s \leq \alpha=1 . \text { Then we have }} \\ {\begin{array}{lll}{\text { (100) }} & {\inf _{V \in \mathbb{V}(\mathcal{T})}\left\|\nabla_{\Gamma}(\widetilde{u} \circ \mathbf{P}-V)\right\|_{L_{2}(\Gamma)} \lesssim h_{\mathcal{T}}^{s}|\widetilde{u}|_{H^{1+s}(\gamma)}}\end{array}}\end{array}

Theorem  40 ( H 1  a-priori error estimate for  C 1 , α  surfaces). Let  γ  be of class  C 1 , α , 0 < α ≤ 1 ,  and assume that the geometric assumptions  ( 69 ) , ( 90 ) ,  and  ( 91 )  are   valid. Let  f ^ ∈ L 2 , # ( γ )  and  u ~ ∈ H 1 + s ( γ )  be the solution of  ( 18 )  and satisfy  \begin{array}{l}{\text { Theorem } 40\left(H^{1} \text { a-priori error estimate for } C^{1, \alpha} \text { surfaces). Let } \gamma \text { be of class } C^{1, \alpha},\right.} \\ {0<\alpha \leq 1, \text { and assume that the geometric assumptions }(69),(90), \text { and }(91) \text { are }} \\ {\text { valid. Let } \widehat{f} \in L_{2, \#}(\gamma) \text { and } \widetilde{u} \in H^{1+s}(\gamma) \text { be the solution of }(18) \text { and satisfy }}\end{array}
∥ u ~ ∥ H 1 + s ( γ ) ≲ ∥ f ~ ∥ L 2 ( γ )  provided  0 < s < α < 1  or  0 < s ≤ α = 1.  If  U ∈ V # ( T )  is the solution to  ( 78 )  with  F = f ~ ∘ P q q r  defined via the lift  P ,  then  ∥ ∇ Γ ( u ~ ∘ P − U ) ∥ L 2 ( Γ ) ≲ h T s ∥ u ~ ∥ H 1 + s ( γ ) + λ T ( Γ ) ∥ f ~ ∥ L 2 ( γ ) ≲ h T s ∥ f ~ ∥ L 2 ( γ ) \begin{array}{l}{\qquad\|\widetilde{u}\|_{H^{1+s}(\gamma)} \lesssim\|\tilde{f}\|_{L_{2}(\gamma)}} \\ {\text { provided } 0<s<\alpha<1 \text { or } 0<s \leq \alpha=1 . \text { If } U \in \mathbb{V}_{\#}(\mathcal{T}) \text { is the solution to }(78)} \\ {\text { with } F=\widetilde{f} \circ \mathbf{P} \frac{q}{q_{\mathrm{r}}} \text { defined via the lift } \mathbf{P}, \text { then }} \\ {\quad\left\|\nabla_{\Gamma}(\widetilde{u} \circ \mathbf{P}-U)\right\|_{L_{2}(\Gamma)} \lesssim h_{\mathcal{T}}^{s}\|\widetilde{u}\|_{H^{1+s}(\gamma)}+\lambda_{\mathcal{T}}(\Gamma)\|\tilde{f}\|_{L_{2}(\gamma)} \lesssim h_{\mathcal{T}}^{s}\|\tilde{f}\|_{L_{2}(\gamma)}}\end{array}

## 后验误差分析

I T s z : H 1 ( Γ ) → V ( T ) \mathcal{I}_{\mathcal{T}}^{\mathrm{sz}}: H^{1}(\Gamma) \rightarrow \mathbb{V}(\mathcal{T})

( 101 ) ∥ v − I T s z v ∥ L 2 ( T ) ≲ h T ∥ ∇ Γ v ∥ L 2 ( ω T ) , ∥ ∇ Γ I T s z v ∥ L 2 ( T ) ≲ ∥ ∇ Γ v ∥ L 2 ( ω T ) (101) \quad\left\|v-\mathcal{I}_{\mathcal{T}}^{\mathrm{sz}} v\right\|_{L^{2}(T)} \lesssim h_{T}\left\|\nabla_{\Gamma} v\right\|_{L^{2}\left(\omega_{T}\right)}, \quad\left\|\nabla_{\Gamma} \mathcal{I}_{\mathcal{T}}^{\mathrm{sz}} v\right\|_{L^{2}(T)} \lesssim\left\|\nabla_{\Gamma} v\right\|_{L^{2}\left(\omega_{T}\right)}

R T ( V ) : = F ∣ T + Δ Γ V ∣ T ∀ T ∈ T J S ( V ) : = ∇ Γ V + ∣ S ⋅ μ S + + ∇ Γ V − ∣ S ⋅ μ S − ∀ S ∈ S T \begin{aligned} R_{T}(V) &:=\left.F\right|_{T}+\left.\Delta_{\Gamma} V\right|_{T} \quad \forall T \in \mathcal{T} \\ J_{S}(V) &:=\left.\nabla_{\Gamma} V^{+}\right|_{S} \cdot \boldsymbol{\mu}_{S}^{+}+\left.\nabla_{\Gamma} V^{-}\right|_{S} \cdot \boldsymbol{\mu}_{S}^{-} \quad \forall S \in S_{\mathcal{T}} \end{aligned}

η T ( V , T ) 2 : = h T 2 ∥ R T ( V ) ∥ L 2 ( T ) 2 + h T ∥ J ∂ T ( V ) ∥ L 2 ( ∂ T ) 2 ∀ T ∈ T \eta _\mathcal{T}(V, T)^{2}:=h_{T}^{2}\left\|R_{T}(V)\right\|_{L^{2}(T)}^{2}+h_{T}\left\|J_{\partial T}(V)\right\|_{L^{2}(\partial T)}^{2} \quad \forall T \in \mathcal{T}
η T ( V ) 2 : = ∑ T ∈ T η T ( V , T ) 2 \eta_{\mathcal{T}}(V)^{2}:=\sum_{T \in \mathcal{T}} \eta \mathcal{T}(V, T)^{2}

Theorem  41  (a-posteriori upper bound for  C 1 , α  surfaces). Let  γ  be of class  C 1 , α ,  be parametrized by  χ = P ∘ X  and satisfy the geometric assumption (69). Let  u ~ ∈ H 1 ( γ )  be the solution to  ( 18 )  and  U ∈ V # ( T )  be the solution to (78) with  F = f ~ ∘ P q q r ∈ L 2 , # ( Γ ) .  Then, for  U ~ : = U ∘ P − 1 : γ → R  we have  ∥ ∇ γ ( u ~ − U ~ ) ∥ L 2 ( γ ) 2 ≲ η T ( U ) 2 + λ T 2 ( Γ ) ∥ f ~ ∥ L 2 ( γ ) 2 \begin{array}{l}{\text { Theorem } 41 \text { (a-posteriori upper bound for } C^{1, \alpha} \text { surfaces). Let } \gamma \text { be of class } C^{1, \alpha},} \\ {\text { be parametrized by } \chi=\mathbf{P} \circ \mathbf{X} \text { and satisfy the geometric assumption (69). Let }} \\ {\widetilde{u} \in H^{1}(\gamma) \text { be the solution to }(18) \text { and } U \in \mathbb{V}_{\#}(\mathcal{T}) \text { be the solution to (78) with }} \\ {F=\tilde{f} \circ \mathbf{P} \frac{q}{q_{\mathrm{r}}} \in L_{2, \#}(\Gamma) . \text { Then, for } \tilde{U}:=U \circ \mathbf{P}^{-1}: \gamma \rightarrow \mathbb{R} \text { we have }} \\ {\qquad\left\|\nabla_{\gamma}(\widetilde{u}-\widetilde{U})\right\|_{L^{2}(\gamma)}^{2} \lesssim \eta_{\mathcal{T}}(U)^{2}+\lambda_{\mathcal{T}}^{2}(\Gamma)\|\widetilde{f}\|_{L_{2}(\gamma)}^{2}}\end{array}

( 102 ) ∫ γ ∇ γ ( u ~ − U ~ ) ⋅ ∇ γ v ~ = I 1 + I 2 + I 3 (102) \quad \int_{\gamma} \nabla_{\gamma}(\widetilde{u}-\widetilde{U}) \cdot \nabla_{\gamma} \widetilde{v}=I_{1}+I_{2}+I_{3}
I 1 = − ∫ Γ ∇ Γ U ⋅ ∇ Γ ( v − V ) + ∫ Γ F ( v − V ) I 2 = ∫ γ ∇ γ U ~ ⋅ E ∇ γ v ~ I 3 = ∫ γ f ~ v ~ − ∫ Γ F v \begin{aligned} I_{1} &=-\int_{\Gamma} \nabla_{\Gamma} U \cdot \nabla_{\Gamma}(v-V)+\int_{\Gamma} F(v-V) \\ I_{2} &=\int_{\gamma} \nabla_{\gamma} \widetilde{U} \cdot \mathbf{E} \nabla_{\gamma} \widetilde{v} \\ I_{3} &=\int_{\gamma} \widetilde{f} \widetilde{v}-\int_{\Gamma} F v \end{aligned}

( 103 ) I 1 = ∑ T ∈ T ∫ T R T ( U ) ( v − V ) + ∑ S ∈ S ∫ S J S ( U ) ( v − V ) (103) \quad I_{1}=\sum_{T \in \mathcal{T}} \int_{T} R_{T}(U)(v-V)+\sum_{S \in \mathcal{S}} \int_{S} J_{S}(U)(v-V)
( 104 ) I 1 ≲ η T ( U ) ∥ ∇ Γ v ∥ L 2 ( Γ ) ≲ η T ( U ) ∥ ∇ γ v ~ ∥ L 2 ( γ ) (104) \quad I_{1} \lesssim \eta_{\mathcal{T}}(U)\left\|\nabla_{\Gamma} v\right\|_{L^{2}(\Gamma)} \lesssim \eta_{\mathcal{T}}(U)\left\|\nabla_{\gamma} \tilde{v}\right\|_{L^{2}(\gamma)}

Theorem  42  (a-posteriori lower bound for  C 1 , α  surfaces). Under the same condi-   tions of Theorem  41  (a-posteriori upper bound for  C 1 , α  surfaces), we have  η T ( U , T ) 2 ≲ ∥ ∇ γ ( u ~ − U ~ ) ∥ L 2 ( ω ~ T ) 2 + osc ⁡ T ( F , ω T ) 2 + λ T 2 ( ω T ) \begin{array}{l}{\text { Theorem } 42 \text { (a-posteriori lower bound for } C^{1, \alpha} \text { surfaces). Under the same condi- }} \\ {\text { tions of Theorem } 41 \text { (a-posteriori upper bound for } C^{1, \alpha} \text { surfaces), we have }} \\ {\qquad \eta_{\mathcal{T}}(U, T)^{2} \lesssim\left\|\nabla_{\gamma}(\widetilde{u}-\widetilde{U})\right\|_{L^{2}\left(\widetilde{\omega}_{T}\right)}^{2}+\operatorname{osc}_{\mathcal{T}}\left(F, \omega_{T}\right)^{2}+\lambda_{\mathcal{T}}^{2}\left(\omega_{T}\right)}\end{array}

osc ⁡ T ( F , T ) 2 : = h T 2 ∥ F − F ˉ ∥ L 2 ( T ) 2 , osc ⁡ T ( F ) 2 : = ∑ T ∈ T osc ⁡ T ( F , T ) 2 \operatorname{osc} \mathcal{T}(F, T)^{2}:=h_{T}^{2}\|F-\bar{F}\|_{L^{2}(T)}^{2}, \quad \operatorname{osc} \mathcal{T}(F)^{2}:=\sum_{T \in \mathcal{T}} \operatorname{osc} \mathcal{T}(F, T)^{2}

Theorem  43  (a-posteriori upper bound for  C 2  surfaces). Let  γ  be of class  C 2  and  ( 67 ) , ( 74 ) , ( 90 ) ,  and (91) hold. Let  u ~  be the solution of  ( 18 )  with  f ~ ∈ L 2 , # ( γ )  and  U ∈ V ( T )  be the solution to  ( 78 )  with  F = f ~ ∘ P q q r ,  where  q  corresponds to the   parametrization  χ = P ∘ X  of  γ  . Then  ∥ ∇ γ ( u ~ − U ∘ P d − 1 ) ∥ L 2 ( γ ) 2 ≲ η T ( U ) 2 + μ T 2 ( Γ ) ∥ f ~ ∥ L 2 ( γ ) 2 \begin{array}{l}{\text { Theorem } 43 \text { (a-posteriori upper bound for } C^{2} \text { surfaces). Let } \gamma \text { be of class } C^{2} \text { and }} \\ {(67),(74),(90), \text { and (91) hold. Let } \widetilde{u} \text { be the solution of }(18) \text { with } \widetilde{f} \in L_{2, \#}(\gamma) \text { and }} \\ {U \in \mathbb{V}(\mathcal{T}) \text { be the solution to }(78) \text { with } F=\widetilde{f} \circ \mathrm{P} \frac{q}{q_{\mathrm{r}}}, \text { where } q \text { corresponds to the }} \\ {\text { parametrization } \chi=\mathrm{P} \circ \mathrm{X} \text { of } \gamma \text { . Then }} \\ {\qquad\left\|\nabla_{\gamma}\left(\widetilde{u}-U \circ \mathbf{P}_{d}^{-1}\right)\right\|_{L_{2}(\gamma)}^{2} \lesssim \eta _\mathcal{T}(U)^{2}+\mu_{\mathcal{T}}^{2}(\Gamma)\|\tilde{f}\|_{L_{2}(\gamma)}^{2}}\end{array}