曲面参数化定义

在计算机图形学中,曲面数据包括两方面:几何数据结构和纹理数据结构。几何数据结构一般是多面体三角网格,存储为.obj/.m/.off/.stl等格式,表示曲面,可进行的几何变换包括平移旋转、射影变换等。纹理数据结构一般是平面图像,表示纹理信息,如颜色、法向量场、局部几何细节鳞片结构、局部材质特性BRDF等。纹理贴图就是将二维纹理贴到三维曲面的过程,在数学上成为曲面参数化问题,即求从曲面到平面的一个光滑双射。将三维曲面映射到二维图像,进行所需变换,再通过逆映射拉回三维曲面,可降低贴图变换的难度。

曲面参数化会带来畸变。通常分为两类:角度畸变和面积畸变。分别对应的解决方案为保角变换(任意两条曲线交角不变)和保面积变换(任意区域面积不变)。

所需的较深数学技巧包括:矩阵求逆、旋转群和四元数表示和渲染算法背后的积分方程、不动点理论,以及更为深入的代数拓扑和微分几何理论。






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值