有限元分析中的常识(持续更新)

有限元分析中的常识(持续更新)

介绍一些学过有限元的人都不得不超级熟练掌握的基本常识。

通用符号

∥ ⋅ ∥ m , p \|\cdot\|_{m, p} m,p 表示 Sobolev 空间 W m , p ( Ω ) W^{m, p}(\Omega) Wm,p(Ω) 范数:
∥ u ∥ m , p = ( ∑ ∣ α ∣ ≤ m ∥ D α u ∥ L p p ) 1 / p \|u\|_{m, p}=\left(\sum_{|\alpha| \leq m}\left\|D^{\alpha} u\right\|_{L^{p}}^{p}\right)^{1 / p} um,p=αmDαuLpp1/p

为了表达的简洁,当 p = 2 p=2 p=2 时,可以省略第一个下标,即 ∥ ⋅ ∥ m = ∥ ⋅ ∥ m , 2 \|\cdot\|_{m}=\|\cdot\|_{m, 2} m=m,2 表示 W m , 2 ( Ω ) = H m ( Ω ) W^{m, 2}(\Omega)=H^{m}(\Omega) Wm,2(Ω)=Hm(Ω) 的范数。

同样地,当 m = 0 m=0 m=0 时,可以省略第一个下标,但是为了和上面一个省略区分,我们一般用 ∥ ⋅ ∥ L p = ∥ ⋅ ∥ 0 , p \|\cdot\|_{L^{p}}=\|\cdot\|_{0, p} Lp=0,p 表示 W 0 , p ( Ω ) = L p ( Ω ) W^{0, p}(\Omega)=L^{p}(\Omega) W0,p(Ω)=Lp(Ω) 范数:
∥ u ∥ L p = ( ∫ Ω ∣ u ∣ p   d x ) 1 / p \|u\|_{L^{p}}=\left(\int_{\Omega}|u|^{p} \mathrm{~d} x\right)^{1 / p} uLp=(Ωup dx)1/p

更进一步的省略,当 m = 0 , p = 2 m=0, p=2 m=0,p=2 时,直接用 ∥ ⋅ ∥ = = ∥ ⋅ ∥ 0 , 2 \|\cdot\|==\|\cdot\|_{0, 2} ==0,2 表示 W 0 , 2 ( Ω ) = L 2 ( Ω ) W^{0,2}(\Omega)=L^{2}(\Omega) W0,2(Ω)=L2(Ω) 的范数。

( ⋅ , ⋅ ) (\cdot, \cdot) (,) 表示 L 2 L^{2} L2 内积。

一根短竖线 ∣ ⋅ ∣ m , p |\cdot|_{m, p} m,p 表示相对于范数的半范,以此类推。

基本不等式

Cauchy-Schwarz 不等式

∣ ( a , b ) ∣ 2 ≤ ∥ a ∥ ∥ b ∥ |(a, b)|^{2} \leq\|a\|\|b\| (a,b)2ab

Hölder’s 不等式

∥ u v w ∥ L s ≤ ∥ u ∥ L p ∥ v ∥ L q ∥ w ∥ L r , ∀ p , q , r ∈ ( 0 , ∞ ] , 1 s = 1 p + 1 q + 1 r . \|u v w\|_{L^{s}} \leq\|u\|_{L^{p}}\|v\|_{L^{q}\|w\|_{L^{r}}}, \quad \forall p, q, r \in(0, \infty], \quad \frac{1}{s}=\frac{1}{p}+\frac{1}{q}+\frac{1}{r} . uvwLsuLpvLqwLr,p,q,r(0,],s1=p1+q1+r1.

Young’s 不等式

p , q ∈ R , 1 p + 1 q = 1 , a p, q \in R, \frac{1}{p}+\frac{1}{q}=1, a p,qR,p1+q1=1,a b ≥ 0 b \geq 0 b0, 则有 Young 不等式:
a b ≤ a p p + b q q . a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} . abpap+qbq.

Young 不等式有一些变形,比如说可以在 a , b a,b a,b 前面加上 ε \varepsilon ε ε − 1 \varepsilon^{-1} ε1 得到 ϵ \epsilon ϵ-Young 不等式。

Poincaré 不等式

∥ v ∥ L q ≤ C s ∥ ∇ v ∥ , ∀ v ∈ L 0 2 ( Ω ) \|v\|_{L^{q}} \leq C_{s}\|\nabla v\|, \quad \forall v \in L_{0}^{2}(\Omega) vLqCsv,vL02(Ω)

离散版本的 Gronwall 不等式

连续的 Gronwall 不等式参考这里

离散的版本精准描述如下:
A , α ∈ [ 0 , + ∞ ) A, \alpha \in[0,+\infty) A,α[0,+),且当 n ≥ 1 n \geq 1 n1, a n , τ n ∈ [ 0 , + ∞ ) a_{n}, \tau_{n} \in[0,+\infty) an,τn[0,+) 满足,
a n ≤ A + α ∑ j = 1 n τ j a j ∀ n ≥ 1 , m : = sup ⁡ n ∈ N α τ n < 1 a_{n} \leq A+\alpha \sum_{j=1}^{n} \tau_{j} a_{j} \quad \forall n \geq 1, \quad m:=\sup _{n \in \mathbb{N}} \alpha \tau_{n}<1 anA+αj=1nτjajn1,m:=nNsupατn<1
β = α / ( 1 − m ) , B : = A / ( 1 − m ) \beta=\alpha /(1-m), B:=A /(1-m) β=α/(1m),B:=A/(1m) τ 0 = 0 \tau_{0}=0 τ0=0, 那么
a n ≤ B e β ∑ i = 0 n − 1 τ i ∀ n ≥ 1 a_{n} \leq B e^{\beta \sum_{i=0}^{n-1} \tau_{i}} \quad \forall n \geq 1 anBeβi=0n1τin1

Sobolev 不等式

∥ u ∥ L q ≤ C ∥ u ∥ 1 \|u\|_{L^{q}} \leq C_{}\|u\|_{1} uLqCu1
其中对于 d = 2 , q ∈ [ 2 , ∞ ) d=2, q \in[2, \infty) d=2,q[2,),对于 d > 2 , q ∈ [ 2 , 2 d d − 2 ] d>2, q \in\left[2, \frac{2 d}{d-2}\right] d>2,q[2,d22d]

嵌入定理

嵌入定理

Ω \Omega Ω 为有界、Lipschitz 边界区域, 则
W m , p ( Ω ) ↪ { C ( Ω ˉ ) , m p > n L q ( Ω ) , ∀ q ∈ [ 1 , ∞ ) , m p = n L q ∗ ( Ω ) , ∀ q ∗ ∈ [ 1 , n p n − m p ] , m p < n W^{m, p}(\Omega) \hookrightarrow \begin{cases}C(\bar{\Omega}), & m p>n \\ L^{q}(\Omega), \forall q \in[1, \infty), & m p=n \\ L^{q^{*}}(\Omega), \forall q^{*} \in\left[1, \frac{n p}{n-m p}\right], & m p<n\end{cases} Wm,p(Ω)C(Ωˉ),Lq(Ω),q[1,),Lq(Ω),q[1,nmpnp],mp>nmp=nmp<n
其中当 m p = n m p=n mp=n p = 1 p=1 p=1 时, q q q 可取 ∞ \infty . 当 m p > n m p>n mp>n 时, 可分为三种情况
W m , p ( Ω ) ↪ { C 0 , m − n p ( Ω ˉ ) , n p < m < n p + 1 C 0 , α ( Ω ˉ ) , ∀ α ∈ [ 0 , 1 ) , m = n p + 1 C 0 , 1 ( Ω ˉ ) , m > n p + 1 W^{m, p}(\Omega) \hookrightarrow \begin{cases}C^{0, m-\frac{n}{p}}(\bar{\Omega}), & \frac{n}{p}<m<\frac{n}{p}+1 \\ C^{0, \alpha}(\bar{\Omega}), \forall \alpha \in[0,1), & m=\frac{n}{p}+1 \\ C^{0,1}(\bar{\Omega}), & m>\frac{n}{p}+1\end{cases} Wm,p(Ω)C0,mpn(Ωˉ),C0,α(Ωˉ),α[0,1),C0,1(Ωˉ),pn<m<pn+1m=pn+1m>pn+1

紧嵌入定理

W m , p ↪ ↪ { C ( Ω ˉ ) , m p > n L q ( Ω ) , ∀ q ∈ [ 1 , ∞ ) , m p = n L q ∗ ( Ω ) , ∀ q ∗ ∈ [ 1 , n p n − m p ) , m p < n W^{m, p} \hookrightarrow \hookrightarrow \begin{cases}C(\bar{\Omega}), & m p>n \\ L^{q}(\Omega), \forall q \in[1, \infty), & m p=n \\ L^{q^{*}}(\Omega), \forall q^{*} \in\left[1, \frac{n p}{n-m p}\right), & m p<n\end{cases} Wm,pC(Ωˉ),Lq(Ω),q[1,),Lq(Ω),q[1,nmpnp),mp>nmp=nmp<n

记不住?确实。可以记住 q = n p n − m p q=\frac{np}{n-mp} q=nmpnp 这个,这是上限。当 q q q 越小的时候, W m , p W^{m, p} Wm,p 越容易嵌入到 L q L^q Lq。因为对于 L q L^q Lq 来说, q q q 越大,范数越强,区域范围越小,越不容易被嵌入。

Cea 引理证明技巧

Céa 引理. 设双线性形式 a ( ⋅ , ⋅ ) a(\cdot, \cdot) a(,) 连续、 V V V 椭圆,即存在 M , α > 0 M, \alpha>0 M,α>0,使得
∣ a ( u , v ) ∣ ≤ M ∥ u ∥ V ∥ v ∥ V , a ( u , u ) ≥ α ∥ u ∥ V 2 , ∀ u , v ∈ V |a(u, v)| \leq M\|u\|_{V}\|v\|_{V}, a(u, u) \geq \alpha\|u\|_{V}^{2}, \forall u, v \in V a(u,v)MuVvV,a(u,u)αuV2,u,vV
u , u h u, u_{h} u,uh 分别为问题变分问题及其有限元离散的解,,则存在常数 C > 0 C>0 C>0, 使得
∥ u − u h ∥ V ≤ C inf ⁡ v h ∈ V h ∥ u − v h ∥ V \left\|u-u_{h}\right\|_{V} \leq C \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{V} uuhVCvhVhinfuvhV
其中右端项 inf ⁡ v h ∈ V h ∥ u − v h ∥ V \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{V} infvhVhuvhV 称为逼近误差。

证明. v h ∈ V h ⊆ V , a ( u , v h ) = f ( v h ) v_{h} \in V_{h} \subseteq V, a\left(u, v_{h}\right)=f\left(v_{h}\right) vhVhV,a(u,vh)=f(vh)。又 a ( u h , v h ) = f ( v h ) a\left(u_{h}, v_{h}\right)=f\left(v_{h}\right) a(uh,vh)=f(vh)。两式相减有
a ( u − u h , v h ) = 0 , ∀ v h ∈ V h a\left(u-u_{h}, v_{h}\right)=0, \forall v_{h} \in V_{h} a(uuh,vh)=0,vhVh
由椭圆性,
α ∥ u − u h ∥ V 2 ≤ a ( u − u h , u − u h ) = a ( u − u h , u − v h ) + a ( u − u h , v h − u h ) ≤ M ∥ u − u h ∥ V ∥ u − v h ∥ V . \begin{aligned} \alpha\left\|u-u_{h}\right\|_{V}^{2} & \leq a\left(u-u_{h}, u-u_{h}\right) \\ &=a\left(u-u_{h}, u-v_{h}\right)+a\left(u-u_{h}, v_{h}-u_{h}\right)\\ & \leq M\left\|u-u_{h}\right\|_{V}\left\|u-v_{h}\right\|_{V} . \end{aligned} αuuhV2a(uuh,uuh)=a(uuh,uvh)+a(uuh,vhuh)MuuhVuvhV.
再由 v h v_{h} vh 的任意性即得证。

做误差估计的时候常常用到这个,但是对于不同的方法,往往需要做一些改变,比如某些方法下,正交性可能就不成立了,这时候就会多出来一些项,需要单独估计。

它说的是,有限元误差可以被逼近误差界住。

Aubin-Nitsche 对偶技巧

Aubin-Nitsche 引理. u , u h u, u_{h} u,uh 分别为变分问题及其有限元离散的解。在凸区域的情形下,存在 C > 0 C>0 C>0,使得
∥ u − u h ∥ 0 , Ω ≤ C h ∥ u − u h ∥ 1 , Ω \left\|u-u_{h}\right\|_{0, \Omega} \leq C h\left\|u-u_{h}\right\|_{1, \Omega} uuh0,ΩChuuh1,Ω

证明关键步骤.
考虑辅助问题
{ − Δ w = u − u h ,  in  Ω w = 0 ,  on  ∂ Ω \begin{cases}-\Delta w=u-u_{h}, & \text { in } \Omega \\ w=0, & \text { on } \partial \Omega\end{cases} {Δw=uuh,w=0, in Ω on Ω
变分形式,
a ( w , v ) = ( u − u h , v ) , ∀ v ∈ H 0 1 ( Ω ) \begin{aligned} a(w, v) &=\left(u-u_{h}, v\right), \quad \forall v \in H_{0}^{1}(\Omega) \\ \end{aligned} a(w,v)=(uuh,v),vH01(Ω)
v = u − u h v=u-u_{h} v=uuh, 则有
∥ u − u h ∥ 2 = a ( w , u − u h ) = a ( w − w h , u − u h ) (  正交性:  a ( u − u h , w h ) = 0 ) ≲ ∥ w − w h ∥ 1 ∥ u − u h ∥ 1 (  有界性  ) ≲ h ∣ w ∣ 2 ∥ u − u h ∥ 1 (  对  w  解的估计 ) ≲ h ∥ u − u h ∥ ∥ u − u h ∥ 1 ( P D E  正则性理论  ) \begin{aligned} \left\|u-u_{h}\right\|_{}^{2} &=a\left(w, u-u_{h}\right) \\ &=a\left( w-w_{h}, u-u_{h}\right) \quad\left(\text { 正交性: } a\left(u-u_{h}, w_{h}\right)=0\right) \\ & \lesssim \left\|w-w_{h}\right\|_{1} \left\|u-u_{h}\right\|_{1}\quad(\text { 有界性 }) \\ & \lesssim h\left|w\right|_{2} \left\|u-u_{h}\right\|_{1}\quad(\text { 对 $w$ 解的估计}) \\ & \lesssim h\left\|u-u_{h}\right\|_{}\left\|u-u_{h}\right\|_{1} \quad(\mathrm{PDE} \text { 正则性理论 }) \end{aligned} uuh2=a(w,uuh)=a(wwh,uuh)( 正交性a(uuh,wh)=0)wwh1uuh1( 有界性 )hw2uuh1(  w 解的估计)huuhuuh1(PDE 正则性理论 )

想要得到 ∥ u − u h ∥ \left\|u-u_{h}\right\| uuh 的估计,构造辅助问题,让右端项 f = u − u h f=u-u_h f=uuh
利用辅助问题的等式的变分形式,从右边到左边。
想利用到辅助问题解的估计,用一次正交性。再利用正则性理论,从左边到右边。
有些特殊的问题,正交性没有怎么办?可能又会多出来一些项,单独处理。

Lax-Milgram 定理

Lax-Milgram 定理. a ( ⋅ , ⋅ ) a(\cdot, \cdot) a(,) 是有界、椭圆双线性型, V V V 为 Hilbert 空间, ℓ ∈ V ′ \ell \in V^{\prime} V. 则变分 问题
{  求  u ∈ V ,  s.t.  a ( u , v ) = ℓ ( v ) , ∀ v ∈ V \left\{\begin{array}{l} \text { 求 } u \in V, \text { s.t. } \\ a(u, v)=\ell(v), \forall v \in V \end{array}\right. {  uV, s.t. a(u,v)=(v),vV
存在唯一解。

  • 7
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆嵩

有打赏才有动力,你懂的。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值