下面学习如何使用 PyTorch 保存和加载模型。我们经常需要加载之前训练过的模型,或继续用新的数据训练模型。所以这部分还是挺重要的。
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
import matplotlib.pyplot as plt
import torch
from torch import nn
from torch import optim
import torch.nn.functional as F
from torchvision import datasets, transforms
import helper
import fc_model
# Define a transform to normalize the data
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])
# Download and load the training data
trainset = datasets.FashionMNIST('~/.pytorch/F_MNIST_data/', download=True, train=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
# Download and load the test data
testset = datasets.FashionMNIST('~/.pytorch/F_MNIST_data/', download=True, train=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=True)
下面是一个图像示例。
image, label = next(iter(trainloader))
helper.imshow(image[0,:]);
训练网络
我将上一部分的模型架构和训练代码移到了文件 fc_model
中。通过导入此模块,我们可以使用 fc_model.Network
轻松创建一个完全连接的网络,并使用 fc_model.train
训练网络。我会使用经过训练后的模型来演示保存和加载。
# Create the network, define the criterion and optimizer
model = fc_model.Network(784, 10, [512, 256, 128])
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
fc_model.train(model, trainloader, testloader, criterion, optimizer, epochs=2)
Epoch: 1/2.. Training Loss: 1.703.. Test Loss: 0.997.. Test Accuracy: 0.659
Epoch: 1/2.. Training Loss: 1.060.. Test Loss: 0.738.. Test Accuracy: 0.733
...
Epoch: 2/2.. Training Loss: 0.528.. Test Loss: 0.445.. Test Accuracy: 0.840
Epoch: 2/2.. Training Loss: 0.502.. Test Loss: 0.465.. Test Accuracy: 0.829
Epoch: 2/2.. Training Loss: 0.540.. Test Loss: 0.439.. Test Accuracy: 0.837
保存和加载网络
每次需要使用网络时都去训练它不太现实,也很不方便。我们可以保存训练过的网络,之后加载这些网络来继续训练或用它们进行预测。
PyTorch 网络的参数保存在模型的 state_dict
中。可以看到这个状态字典包含每个层级的权重和偏差矩阵。
print("Our model: \n\n", model, '\n')
print("The state dict keys: \n\n", model.state_dict().keys())
Our model:
Network(
(hidden_layers): ModuleList(
(0): Linear(in_features=784, out_features=512, bias=True)
(1): Linear(in_features=512, out_features=256, bias=True)
(2): Linear(in_features=256, out_features=128, bias=True)
)
(output): Linear(in_features=128, out_features=10, bias=True)
(dropout): Dropout(p=0.5, inplace=False)
)
The state dict keys:
odict_keys(['hidden_layers.0.weight', 'hidden_layers.0.bias', 'hidden_layers.1.weight', 'hidden_layers.1.bias', 'hidden_layers.2.weight', 'hidden_layers.2.bias', 'output.weight', 'output.bias'])
最简单的方法是使用 torch.save
保存状态字典。例如,我们可以将其保存到文件 'checkpoint.pth'
中。
torch.save(model.state_dict(), 'checkpoint.pth')
然后,使用 torch.load
加载这个状态字典。
state_dict = torch.load('checkpoint.pth')
print(state_dict.keys())
odict_keys(['hidden_layers.0.weight', 'hidden_layers.0.bias', 'hidden_layers.1.weight', 'hidden_layers.1.bias', 'hidden_layers.2.weight', 'hidden_layers.2.bias', 'output.weight', 'output.bias'])
要将状态字典加载到神经网络中,需要执行 model.load_state_dict(state_dict)
。
model.load_state_dict(state_dict)
<All keys matched successfully>
看上去很简单?其实不然!只有模型结构和检查点的结构完全一样时,状态字典才能加载成功哦。如果我在创建模型时使用了不同的结构,便无法顺利加载。
# Try this
model = fc_model.Network(784, 10, [400, 200, 100])
# This will throw an error because the tensor sizes are wrong!
model.load_state_dict(state_dict)
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-13-d859c59ebec0> in <module>
2 model = fc_model.Network(784, 10, [400, 200, 100])
3 # This will throw an error because the tensor sizes are wrong!
----> 4 model.load_state_dict(state_dict)
~/anaconda3/envs/tf/lib/python3.6/site-packages/torch/nn/modules/module.py in load_state_dict(self, state_dict, strict)
845 if len(error_msgs) > 0:
846 raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
--> 847 self.__class__.__name__, "\n\t".join(error_msgs)))
848 return _IncompatibleKeys(missing_keys, unexpected_keys)
849
RuntimeError: Error(s) in loading state_dict for Network:
size mismatch for hidden_layers.0.weight: copying a param with shape torch.Size([512, 784]) from checkpoint, the shape in current model is torch.Size([400, 784]).
size mismatch for hidden_layers.0.bias: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([400]).
size mismatch for hidden_layers.1.weight: copying a param with shape torch.Size([256, 512]) from checkpoint, the shape in current model is torch.Size([200, 400]).
size mismatch for hidden_layers.1.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([200]).
size mismatch for hidden_layers.2.weight: copying a param with shape torch.Size([128, 256]) from checkpoint, the shape in current model is torch.Size([100, 200]).
size mismatch for hidden_layers.2.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([100]).
size mismatch for output.weight: copying a param with shape torch.Size([10, 128]) from checkpoint, the shape in current model is torch.Size([10, 100]).
这就是说,我们需要重新构建和训练时完全一样的模型。我们需要将模型架构信息与状态字典一起保存在检查点里。所以,你需要创建一个字典,其中包含完全重新构建模型所需的所有信息。
checkpoint = {'input_size': 784,
'output_size': 10,
'hidden_layers': [each.out_features for each in model.hidden_layers],
'state_dict': model.state_dict()}
torch.save(checkpoint, 'checkpoint.pth')
现在,检查点中包含了重建训练模型所需的全部信息。你可以随意将它编写为函数。同样,我们可以编写一个函数来加载检查点。
def load_checkpoint(filepath):
checkpoint = torch.load(filepath)
model = fc_model.Network(checkpoint['input_size'],
checkpoint['output_size'],
checkpoint['hidden_layers'])
model.load_state_dict(checkpoint['state_dict'])
return model
model = load_checkpoint('checkpoint.pth')
print(model)