utils文件

activations.py 


SiLU:

class SiLU(nn.Module):
    # SiLU activation https://arxiv.org/pdf/1606.08415.pdf
    @staticmethod
    def forward(x):
        return x * torch.sigmoid(x)

SiLU(Sigmoid Linear Unit)是一种新的激活函数,其目的是在保持梯度稀疏性的同时,解决ReLU及其变体存在的问题,特别是在神经网络的前几层。

SiLU激活函数的数学表达式为:y=x*sigmond(x).


Hard-SiLU:

class Hardswish(nn.Module):
    # Hard-SiLU activation
    @staticmethod
    def forward(x):
        # return x * F.hardsigmoid(x)  # for TorchScript and CoreML
        return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0  # for TorchScript, CoreML and ONNX

使用了一个名为F.hardtanh的函数,这个函数是PyTorch中的一个非线性激活函数,类似于ReLU(Rectified Linear Unit)函数,但是它在负数部分是线性的,而在正数部分则不是。这个函数对输入x进行计算,然后返回一个结果。

计算的过程是:先将x的值加上3,然后在0和6的范围内进行硬阈值处理(hardsigmoid或者hardtanh),最后将处理后的结果除以6。

这样的操作可以提供一个相对ReLU来说更加线性的负数区域,同时在正数区域也不会像Sigmoid函数那样在数值上容易饱和,因此对于一些深度学习的模型训练来说,可能会提供更好的效果。


Mish:

class Mish(nn.Module):
    # Mish activation https://github.com/digantamisra98/Mish
    @staticmethod
    def forward(x):
        return x * F.softplus(x).tanh()

Mish激活函数是一种新的激活函数,它结合了Softplus和Tanh函数。Softplus是一种平滑版本的ReLU激活函数,它避免了ReLU的梯度消失问题。然而,Softplus在非常大的值处可能会变得非常缓慢或几乎停滞,这可能导致梯度非常小或几乎为零。而Tanh函数在所有值上都有正梯度,并且在非常大或非常小的值处梯度不会接近零。


Mish activation memory-efficient:

class MemoryEfficientMish(nn.Module):
    # Mish activation memory-efficient
    class F(torch.autograd.Function):

        @staticmethod
        def forward(ctx, x):
            ctx.save_for_backward(x)
            return x.mul(torch.tanh(F.softplus(x)))  # x * tanh(ln(1 + exp(x)))

        @staticmethod
        def backward(ctx, grad_output):
            x = ctx.saved_tensors[0]
            sx = torch.sigmoid(x)
            fx = F.softplus(x).tanh()
            return grad_output * (fx + x * sx * (1 - fx * fx))

    def forward(self, x):
        return self.F.apply(x)

手动构建自定义函数的前向和后向计算过程,以优化内存使用。


FReLU:

class FReLU(nn.Module):
    # FReLU activation https://arxiv.org/abs/2007.11824
    def __init__(self, c1, k=3):  # ch_in, kernel
        super().__init__()
        self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
        self.bn = nn.BatchNorm2d(c1)

    def forward(self, x):
        return torch.max(x, self.bn(self.conv(x)))

一个卷积层self.conv和一个批量归一化层self.bn。

在前向传播方法forward中,输入x首先通过卷积层self.conv进行卷积操作,然后通过批量归一化层self.bn进行归一化。最后,使用torch.max函数返回输入x和卷积结果的较大值,即应用了ReLU激活函数的原理。

FReLU的功能可以看作是将输入x通过卷积进行变换,然后将结果通过批量归一化进行变换,并选择变换后结果和输入x中的较大值作为最后的输出。这种结构可以增强模型的非线性表达能力。


AconC:

class AconC(nn.Module):
    r""" ACON activation (activate or not)
    AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
    according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
    """

    def __init__(self, c1):
        super().__init__()
        self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
        self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
        self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))

    def forward(self, x):
        dpx = (self.p1 - self.p2) * x
        return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x

init函数:初始化三个参数,p1p2beta。其中p1p2是随机的,beta是全1的参数。这些参数都是四维的,形状为(1, c1, 1, 1),其中c1是输入的通道数。p1p2是可学习的参数,即在训练过程中会更新。

forward前向传播函数:首先计算了(p1 - p2) * x的结果,命名为dpx。然后,使用sigmoid函数对dpx与beta的乘积进行激活,再将结果与p2 * x相加。

AconC的公式:(p1x-p2x) * sigmoid(beta*(p1x-p2x)) + p2*x

这种激活函数结构可以使得神经网络具有更强的非线性表达能力,对于一些复杂的模式学习会更有优势。


MetaAconc:

class MetaAconC(nn.Module):
    r""" ACON activation (activate or not)
    MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
    according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
    """

    def __init__(self, c1, k=1, s=1, r=16):  # ch_in, kernel, stride, r
        super().__init__()
        c2 = max(r, c1 // r)
        self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
        self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
        self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
        self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
        # self.bn1 = nn.BatchNorm2d(c2)
        # self.bn2 = nn.BatchNorm2d(c1)

    def forward(self, x):
        y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
        # batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
        # beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y)))))  # bug/unstable
        beta = torch.sigmoid(self.fc2(self.fc1(y)))  # bug patch BN layers removed
        dpx = (self.p1 - self.p2) * x
        return dpx * torch.sigmoid(beta * dpx) + self.p2 * x

增强神经网络对特定激活函数的选择能力,从而提升模型的表达能力。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苑苑圆圆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值