次梯度与次梯度算法

次梯度与次梯度算法

对于可微函数可以定义梯度,但是对于一般的函数,梯度不一定存在。对于凸函数,类比梯度的一阶性质,我们引入次梯度的概念,其在凸优化算法设计与理论分析中扮演者重要角色。

一、次梯度定义
f f f为适当凸函数, x x x f f f定义域中的一点,若向量 g ∈ R n g\in R^n gRn满足
f ( y ) ≥ f ( x ) + g T ( y − x ) , ∀ y ∈ d o m f (1) f(y)\ge f(x) + g^T(y-x), \forall y\in dom f \tag{1} f(y)f(x)+gT(yx),ydomf(1)
则称 g g g为函数 f f f在点 x x x处的一个次梯度。进一步地,称集合
∂ f ( x ) = { g ∣ g ∈ R n , f ( y ) ≥ f ( x ) + g T ( y − x ) } (2) \partial f(x)=\{g|g\in R^n,f(y)\ge f(x) + g^T(y-x)\}\tag{2} f(x)={ ggRn,f(y)f(x)+gT(yx)}(2)
f f f在点 x x x处的次微分.如图1所示
在这里插入图片描述

对于函数 f ( x ) f(x) f(x) g 1 g_1 g1为点 x 1 x_1 x1处的唯一次梯度,而 g 2 , g 3 g_2, g_3 g2,g3为点 x 2 x_2 x2处的两个不同的次梯度。
从次梯度的定义可以看出,次梯度实际上借鉴了凸函数判定定理的一阶条件。定义次梯度的初衷之一也是希望它具有类似于梯度的一些性质。

二、次梯度的性质
性质1:设 f ( x ) f(x) f(x) x 0 ∈ i n t d o m f x_0 \in intdom f x0intdomf可微,则 ∂ f ( x 0 ) = { ∇ f ( x 0 ) } \partial f(x_0)=\{\nabla f(x_0)\} f(x0)={ f(x0)}
性质2:次梯度的单调性
f : R n → R f:R^n\rightarrow R f:RnR为凸函数, x , y ∈ d o m f x,y\in dom f x,ydomf,则
( u − v ) T ( x − y ) ≥ 0 (u-v)^T(x-y)\ge 0 (uv)T(xy)0
其中 u ∈ ∂ f ( x ) , v ∈ ∂ f ( y ) u\in\partial f(x), v\in\partial f(y) uf(x),vf(y)
性质3:凸函数的非负线性组合
f x , f 2 f_x,f_2 fx,f2为凸函数,且满足二者定义域交集非空,若 x ∈ d o m f 1 ∩ d o m f 2 x\in domf_1\cap domf_2 xdomf1domf2, 且 f ( x ) = α 1 f 1 ( x ) + α 2 f 2 ( x ) f(x)=\alpha_1 f_1(x)+\alpha2 f_2(x) f(x)=α1f1(x)+α2f2(x),则 f ( x ) f(x) f(x)的次微分 ∂ f ( x ) = α 1 ∂ f 1 ( x ) + α 2 ∂

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值