【干货】Ollama全新界面+OpenAI开源模型,小白也能轻松部署本地大模型,建议收藏学习

部署运行你感兴趣的模型镜像

本文介绍AI领域两大突破:Ollama推出简化界面的本地AI部署工具和OpenAI发布首个开源模型GPT-OSS。通过简单安装Ollama,零基础用户即可在本地运行强大AI模型,告别复杂终端操作,只需下载应用、选择模型即可直接聊天,实现本地、私密、免费的类ChatGPT体验。

前排提示,文末有大模型AGI-CSDN独家资料包哦!


在过去的几天里,AI 世界迎来了两件大事:

第一,Ollama 推出了全新的用户界面。 它简单易用,让本地运行 AI 模型的体验,就像打开微信聊天一样轻松,即使你没有任何开发基础,也能轻松部署本地大模型!

第二,OpenAI 发布了 GPT-OSS —— 这是OpenAI第一个开源模型,功能强大、灵活适配,而且任何人都可以在自己的机器上免费运行。没错,OpenAI的模型可以免费用了。

有意思的来了,通过这两个工具,即使你完全没有任何开发基础,也能轻松部署本地大模型,免费享受类似 ChatGPT 的使用体验。话不多说,我们进入详细教程!耐心看完,一步就能搞定!

只需一步:下载Ollama

首先,你需要在电脑上安装 Ollama。它就像是一个“本地 AI 引擎”,帮你把模型跑起来。 👉 打开 Ollama 官网https://ollama.com/,根据系统选择对应的安装包(支持 Mac,Windows,linux)。

下载完成后安装即可。是的,只需要这一步,你就拥有本地大模型了!

当你首次发起提问时,如果本地没有模型,Ollama会自动开始下载安装!(模型有些大,稍等片刻)至于Turbo 模式就是在本地跑不动大模型时,把计算交给云端高性能服务器,加速推理的付费选项。

整体响应速度,还是非常快的,当然由于是本地模型,也取决于你的电脑性能。

Ollama官网上也有很多其他开源的本地大模型,包括DeepSeek,阿里Qwen3,Gamma3等等。

在这之前,想要运行本地 AI 模型,通常需要在终端里输入命令,还要懂一些技术知识。

现在有了 Ollama 的全新界面,只要下载应用,选择模型,就能直接聊天 —— 不需要终端,也不用复杂的设置。Ollama 一直在推动本地、私密、离线 AI 的发展,而这次,它终于让所有人都能轻松使用。

文章来自网上,侵权请联系博主
读者福利:倘若大家对大模型感兴趣,那么这套大模型学习资料一定对你有用。

针对0基础小白:

如果你是零基础小白,快速入门大模型是可行的。
大模型学习流程较短,学习内容全面,需要理论与实践结合
学习计划和方向能根据资料进行归纳总结

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

请添加图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

这里我们能提供零基础学习书籍和视频。作为最快捷也是最有效的方式之一,跟着老师的思路,由浅入深,从理论到实操,其实大模型并不难

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

您可能感兴趣的与本文相关的镜像

GPT-oss:20b

GPT-oss:20b

图文对话
Gpt-oss

GPT OSS 是OpenAI 推出的重量级开放模型,面向强推理、智能体任务以及多样化开发场景

AI大模型智能体中接入企业微信,实现消息互通,通常可以通过企业微信提供的开放平台API和Webhook机制来完成。以下是详细步骤: ### 1. 注册并配置企业微信应用 首先需要在企业微信管理后台创建一个自建应用,用于与AI智能体进行通信。 - 登录企业微信管理后台,进入“应用管理” -> “创建自建应用”。 - 填写应用名称、应用图标等基本信息。 - 在“可见范围”中设置应用可访问的成员或部门。 - 在“接收消息”选项中启用“接收消息API”,并配置接收消息的服务器URL、Token和EncodingAESKey。这些参数将用于验证消息来源和加密解密消息内容[^2]。 ### 2. 获取企业微信API访问权限 为了能够调用企业微信API发送和接收消息,需要获取相应的权限: - 在应用详情页中找到“API权限”部分,为应用分配“消息发送”和“消息读取”等权限。 - 获取企业微信API的访问令牌(access_token),这是调用大多数企业微信API接口所必需的参数。可以通过调用`https://qyapi.weixin.qq.com/cgi-bin/gettoken?corpid=ID&corpsecret=SECRET`接口,传入企业的CorpID和应用的Secret来获取[^1]。 ### 3. 配置AI智能体的消息处理逻辑 AI智能体需要能够处理来自企业微信的消息,并生成相应的回复。 - 在AI智能体的服务端,实现一个Web服务用于接收企业微信推送的消息。该服务需要能够验证消息来源(通过Token验证)、解密消息(使用EncodingAESKey),并解析消息内容。 - 根据业务需求,编写消息处理逻辑。例如,可以是简单的关键词回复,也可以是复杂的自然语言处理和对话管理。 - 智能体处理完消息后,需要构造回复消息,并通过企业微信API将回复消息发送给用户。可以使用`https://qyapi.weixin.qq.com/cgi-bin/message/send?access_token=ACCESS_TOKEN`接口发送消息。 ### 4. 实现消息的双向同步 为了实现消息的双向同步,确保AI智能体与企业微信之间的消息流通无阻: - 在企业微信应用的“消息通知”设置中,开启“消息同步”功能,确保所有消息都能被正确推送到AI智能体的服务端。 - 对于需要长期存储的消息,可以在AI智能体的服务端实现消息持久化功能,以便后续查询和分析。 - 如果需要支持消息撤回、已读回执等功能,还需要在服务端实现相应的处理逻辑,并通过企业微信API更新消息状态。 ### 5. 安性和稳定性保障 - 为了保证消息的安性,建议使用HTTPS协议进行通信,并在服务端实现严格的权限控制和消息验证机制。 - 为了提高系统的稳定性和可用性,建议在服务端实现消息队列和异步处理机制,以应对高并发场景下的消息处理压力。 - 同时,还需要定期监控服务的运行状态,及时发现并解决可能出现的问题,确保消息互通的稳定性和可靠性[^1]。 ### 示例代码:接收企业微信消息并回复 ```python from flask import Flask, request import json import requests app = Flask(__name__) # 企业微信应用的Secret SECRET = 'your_secret' # 企业的CorpID CORPID = 'your_corpid' # 获取access_token def get_access_token(): url = f'https://qyapi.weixin.qq.com/cgi-bin/gettoken?corpid={CORPID}&corpsecret={SECRET}' response = requests.get(url) result = response.json() return result['access_token'] # 发送消息 def send_message(user_id, content): access_token = get_access_token() url = f'https://qyapi.weixin.qq.com/cgi-bin/message/send?access_token={access_token}' data = { "touser": user_id, "msgtype": "text", "agentid": 1000001, # 应用的AgentId "text": { "content": content }, "safe": 0 } response = requests.post(url, data=json.dumps(data)) return response.json() @app.route('/wechat', methods=['GET', 'POST']) def handle_wechat(): if request.method == 'GET': # 验证回调URL echostr = request.args.get('echostr') return echostr else: # 处理接收到的消息 data = request.json user_id = data['FromUserName'] content = data['Content'] reply_content = f'您发送的消息是:{content}' send_message(user_id, reply_content) return 'success' if __name__ == '__main__': app.run(port=80, host='0.0.0.0') ``` ### 6. 测试与上线 - 在开发完成后,建议进行充分的测试,确保消息的发送、接收、处理和回复等功能都能正常工作。 - 测试通过后,可以将AI智能体的服务部署到生产环境中,并在企业微信中正式启用该应用。 - 最后,建议持续关注用户反馈和系统日志,不断优化智能体的性能和用户体验[^3]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值