本文详细介绍了LoRA(Low-Rank Adaptation)参数高效微调技术,通过引入小尺寸可学习矩阵A和B来修改大型预训练模型权重W,显著减少内存和计算开销,同时保持与全参数微调相当的性能。文章解释了LoRA的数学原理、参数初始化方法(B初始化为零而A不能的原因),并指出其能将检查点大小减少约10,000倍,训练速度提高25%,且不引入推理延迟,是微调大模型的理想选择。
前排提示,文末有大模型AGI-CSDN独家资料包哦!

在我们正式讨论参数高效微调(Parameter-Efficient Fine-Tuning,PEFT)技术之前,我们先回顾一下如何进行全参数微调(full fine-tuning),这将有助于我们理解 Lora 被发明的动机。
Full Fine-Tuning
回顾神经网络的结构,绝大部分都是矩阵计算。考虑预训练模型中某些随机层的当前权重W 的维度是d*k,我们希望在某一个数据集上对其进行微调。

在微调过程中, 我们首先需要得到权重 W更新的变化量,即ΔW

为了简单起见,我们可以考虑ΔW作为在新数据集上运行梯度下降后获得的更新:

在推理过程中,我们可以计算输入样本x的预测值如下:

事实上,在所有模型微调迭代中,W可以保持静态,并且所有使用梯度计算的权重更新ΔW都可以合并到 W。在 LLM 中,矩阵W往往非常庞大,ΔW和 W 具有同样的尺寸,这将带来很大的内存和计算开销。因此,我们必须引入一些巧妙的技巧来操纵ΔW,这样我们即可以实现微调目标,同时确保不消耗高内存。
LoRA: Low-Rank Adaptation

LoRA 的核心思想是与基础模型(例如完整的 GPT-3)相比,训练非常少的参数 ,同时保留我们通过全模型微调所获得的性能。从数学上讲,自适应(Adaptation)是通过使用以下公式修改ΔW,从而改变Transformer层中的权重 W:

这里,W是基础模型的参数,A和 B 是可学习的参数。如上图所示,矩阵A 和 B 的维度与 W相比,尺寸要小得多西,导致可训练参数的数量显著减少。尽管这种低秩更新很简单,但它被证明在保留 LLM 的细微功能的同时,引入针对新任务或数据集所需的调整方面非常有效。
这样,如果有很多用户希望微调 LLM 模型(例如来自 OpenAI),OpenAI 只需存储上述两个矩阵A和B 。这对于引入此功能的所在层的参数来说,其尺寸非常小。然而,原始权重矩阵W 在所有微调版本中并没有被改变,即可以在所有用户之间共享的版本。

根据 LoRA 的原始论文,他们将检查点大小减少了大约 10,000 倍 ——从 350GB 减少到仅 35MB。此外,他们还观察到,与完全微调(Full Fine-Tuning)相比,GPT-3 175B 模型的训练速度提高了 25%,这是非常明显的,因为我们没有计算绝大多数参数的梯度。另一个关键优势是它不会引入推理延迟。这是因为它采用了简单的线性设计,使我们能够合并可训练矩阵(A和 B) 与固定的参数矩阵 W,因此人们可以按照与平时完全相同的方式进行推理。
LoRA 的一个很酷的点是超参数r可以比相应权重矩阵的维度小几个数量级。例如,在结果表中,比较r=1与其他等级一样:

在大多数情况下,我们注意到r=1几乎与任何其他更高级别的表现一样好。换句话说,这意味着A和B可以是一个简单的行和列矩阵。
LoRA参数初始化
LoRA矩阵初始化:简单来说,下采样矩阵A用随机高斯分布初始化,而上采样矩阵B初始化为零。此初始化确保初始矩阵ΔW在训练开始时仍然是零矩阵,因此对预训练参数没有影响。
为什么B可以初始化为全零?
如果B初始化为全零,那么在开始时

这意味着模型的权重尚未改变,因此它仍然是原始模型。随着训练的进行,B将逐渐更新,并最终学习所需的权重调整。B的梯度是:

因此,初始化B为零不会妨碍训练,因为它仍然可以接收非零梯度。
为什么不能将 A 初始化为全零?
如果A初始化为全零,则A 的梯度

将为零,因为此时B的初始化为零,所以A不会更新,此时 B 的梯度也是 0,因此 B 也不会更新。这会阻止模型通过训练学习进行有意义的调整。这篇论文The Impact of Initialization on LoRA Finetuning Dynamics对 A 和 B 两种初始化方法进行了比较实验:

- Init[A] 提供了更好的特征学习效率,但引入了一些训练不稳定性
- Init[B] 提供稳定的训练和次优的特征学习
实际实验中,训练过程中存在一些不稳定性,但可以接受,因此Init[A] 的整体表现通常更佳。
读者福利:倘若大家对大模型感兴趣,那么这套大模型学习资料一定对你有用。
针对0基础小白:
如果你是零基础小白,快速入门大模型是可行的。
大模型学习流程较短,学习内容全面,需要理论与实践结合
学习计划和方向能根据资料进行归纳总结
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓


👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

👉大模型视频和PDF合集👈
这里我们能提供零基础学习书籍和视频。作为最快捷也是最有效的方式之一,跟着老师的思路,由浅入深,从理论到实操,其实大模型并不难。

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

1566

被折叠的 条评论
为什么被折叠?



